Low-energy muons

- Low energy μ^+ beam and instrument for LE-\(\mu\)SR
- LE-\(\mu\)SR data collected on single-layer FeSe
- Practicalities

Pabitra Biswas, ISIS Muon Group
Low energy μ^+ beam and instrument for LE-\(\mu\)SR at PSI

https://www.psi.ch/smus/lem

“surface” $\mu^+ \sim 4 \text{ MeV}$
LE-µ+ Apparatus @ µE4 beamline

~ 6 x10^8 µ+/s total
~ 1.9 x10^8 µ+/s on LEM source
~ 1.1 x10^4 µ+/s LEM

Th. Prokscha, E. Morenzoni, K. Deiters, F. Foroughi, D. George, R. Kobler, A. Suter and V. Vrankovic
Introduction: Single-layer FeSe

FS mapping of single-layer FeSe at 20 K that consists only of the electron-like Fermi-surface sheet around M (π,π).

Evidence of superconductivity in monolayer FeSe

Simulated muon implantation profiles in the single-layer FeSe films grown on SrTiO3 substrate, using the program TRIMSP which has been shown to calculate the stopping profile of the implanted muons with sufficient accuracy.
Evidence of superconductivity in monolayer FeSe

ZF-μSR time spectra collected at 5 and 100 K show no sign of magnetism in single-layer FeSe.

\[A_t = A_0 \left\{ \frac{1}{3} + \frac{2}{3} (1 - A^2 t^2) \exp \left(-\frac{\Lambda^2 t^2}{2} \right) \right\} \]

TF-μSR time spectra of single-layer FeSe, collected at 5 K, shows higher damping than the 100 K data due to the formation of FLL.

\[G_x(t) = A_0 e^{-\sigma^2 t^2} \cos(\gamma \mu B_{int} t + \varphi) + A_{bg} \cos(\gamma \mu B_{bg} t + \varphi) \]
Evidence of superconductivity in monolayer FeSe

The temperature dependence of the muon spin relaxation rate σ which increases below 60 K due to superconductivity in single-layer FeSe. Internal field however showing nearly temperature independent nature.

\[\sigma_{sc}^2(T) = \frac{\varphi_0^2}{\gamma^2 \lambda^4(T)} \]

Temperature dependence of muon spin relaxation rate σ which increases below 60 K due to superconductivity in single-layer FeSe. Internal field however showing nearly temperature independent nature.
Evidence of superconductivity in monolayer FeSe

Temperature dependence of superfluid density of single-layer FeSe, showing nodeless superconductivity like bulk FeSe superconductor.

BCS s-wave model:

\[
\lambda^{-2}(T) = 1 + 2 \int_{\Delta(T)}^{\infty} \frac{df}{dE} \frac{E dE}{\sqrt{E^2 - \Delta(T)^2}}
\]

\[
f = \frac{1}{1 + e^{E/k_BT}}
\]

\[
\Delta(T) = \Delta(0) \tanh \left\{ 1.82 \left[1.018 \left(\frac{T_c}{T} - 1 \right) \right]^{0.51} \right\}
\]
Single-layer FeSe/STO: superfluid density and gap

\[\lambda(0) \approx 112(5) \text{ nm} \]

Fitting the energy (depth) dependent field broadening:

\[\Lambda_P(0) \equiv \frac{2\lambda^2}{d} \approx 2.5(5) \times 10^4 \text{ nm} \]

→ Sheet supercarrier density:

\[n_{s}^{2D}(0) = \frac{2m^*}{\mu_0 e^2 \Lambda_P} < \approx 6 \times 10^{14} \text{ cm}^{-2} \]

(m* = 2.7 m_e)

- Large superfluid density: more than one layer contributing?, proximity (ARPES ≈ 0.1 electron/Fe → 1.3 \times 10^{14} \text{ cm}^{-2})

- \[n_{s}^{2D}(T) \rightarrow \text{s-wave gap: } \Delta(0) = 10.2(7) \text{ meV} \]

(ARPES/STM 10-15 meV)

- Superconductivity found across most of the buried layer (cm²) (no phase separation)
Practicalities

• Measure a sample in 1-2 days
• Field range: 0-35 mT
• Temperature range: 2.5 – 350 K
• Depth range: 2 - 200 nm
• Depth resolution: ~ 10nm
• Sample size: 1-9 cm²
We use the LE-µSR technique to detect and quantify the superfluid density and determine the gap symmetry in a single-layer of FeSe grown on STO (100) buried in a heterostructure consisting of Se(25nm)/4 ML FeSe/1 ML FeSe/Nb 0.5% doped STO (substrate).

Measurements in the applied field show a temperature-dependent broadening of the field distribution below 60 K, reflecting the formation of a vortex state.

Zero field measurements rule out the presence of magnetism of static or fluctuating origin.

We determine a superconducting sheet carrier density of up to $6 \times 10^{14} \text{ cm}^2$ at $T=0$ K which is 4 times higher than the excess electrons in single-layer FeSe obtained from ARPES measurements. This may suggest that the additional FeSe layers or STO contribute to superconductivity of ML FeSe/STO, possibly via a proximity effect.

Transverse-field (TF)-µSR results reveal that the observed superfluid density can be well described by a simple BCS $s/s+s$-wave model, indicates for nodeless superconducting state in the single-layer FeSe and is consistence with its bulk counterpart.
Acknowledgements

Z. Salman, E. Morenzoni, A. Amato
Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institut, Villigen PSI, Switzerland

Q. Song, R. Peng, J. Zhang, L. Shu, D. L. Feng
State Key Laboratory of Surface Physics, Department of Physics, Fudan University, China

Thank you very much for your attention 😊