

Science & Technology Facilities Council ISIS Neutron and Muon Source

Making Muons

Peter Baker ISIS Pulsed Neutron and Muon Source

With thanks to James Lord for diagrams

Everyone's local muon source

Everyone's local muon source

- Muons made 15km above Earth's surface
- Flux ~ 1 cm⁻¹min⁻¹
- \cdot Energy ~ 4 GeV
- \cdot Stopping range ~ 20 m
- Distribution of directions
- \cdot No polarization

Everyone's local muon source

- Muons made 15km above Earth's surface
- Flux ~ 1 cm⁻¹min⁻¹
- \cdot Energy ~ 4 GeV
- \cdot Stopping range ~ 20 m
- Distribution of directions
- \cdot No polarization
- Useful for a limited number of samples!

Making Muons (in a useful manner)

Peter Baker ISIS Pulsed Neutron and Muon Source

What do we want?

- 1. Positive or negative muons
- 2. Low contamination with other particles
- 3. Muons hitting the sample
- 4. Muons stopping in our sample (well-defined and suitable energy)
- 5. Few muons missing the sample
- 6. High spin polarization (if needed)
- 7. Useful time structure for experiment
- 8. Lots of muons!

How do we get it? (Plan of talk)

- Particle accelerators
- Muon production targets
- \cdot Getting the muons to the sample
 - Focussing
 - Bending
 - Selecting the right particles
 - Manipulating the beam
- Planning and designing
- Monitoring to check it works
- Future possibilities

PARTICLE PHYSICS AND PARTICLE ACCELERATORS

Pion production – physics

Lower energy

- Single pion production
 - $p^+ + p^+ \rightarrow p^+ + n + \pi^+$
 - $p^+ + n \rightarrow p^+ + p^+ + \pi^-$
- Needs $E_p > 280 \text{MeV}$
- Maximum production $500 \text{MeV} < E_p < 1 \text{GeV}$
 - MuSIC: 392MeV
 - TRIUMF: 520MeV
 - PSI: 590MeV
 - ISIS: 800MeV

Higher energy

- \cdot Double pion production
 - $p^+ + p^+ \rightarrow p + p + \pi^+ + \pi^-$
- Needs $E_{\rm p} > 600 {\rm MeV}$
- Production increases up to $E_p \sim 1.5 \text{GeV}$
 - J-PARC: 3GeV

Particle accelerators

Cyclotrons (quasi-continuous)

Synchrotrons (pulsed)

Muon sources of the world

ISIS, Oxfordshire, UK

MuSIC, Osaka, Japan

Paul Scherrer Institute, Zurich, Switzerland

TRIUMF, Vancouver, Canada

J-PARC, Ibaraki, Japan

Continuous and pulsed beams

	Continuous (e.g. PSI)	Pulsed (e.g. ISIS)	
Beam structure	Effectively DC (structure << τ_{μ})	Pulse << τ_{μ} , spacing >> τ_{μ}	
Counting system	Each muon counted in, each positron counted out	Average start time from accelerator, count positrons	
Rate limit (time- differential)	When two muons in sample (~20 million/hour)	A few counts per detector per pulse (~150 million/hour)	
Integral counts	Just count positrons with 100% duty factor	Always gives time-differential signal with 0.01% duty factor	
Background	If second muon not detected (Measure to $\sim 5\tau_{\mu}$ without tricks)	Mostly cosmic rays (Measure to > $12\tau_{\mu}$ routinely)	
Small samples	Can use veto counters to exclude muons missing sample	Either collimate or use 'fly-past'	
Frequency range	Limited by detectors and electronics (500MHz - >10GHz)	Limited by pulse width (~10MHz)	

MUON PRODUCTION TARGETS

Muon Production Targets - I

- Material: Low atomic number and high melting point
 - High atomic number gives more neutrons by spallation and more scattering of the beam
- · Usually Graphite, sometimes Beryllium
- Beams and therefore targets are in vacuum
- ISIS target heated to ~600°C, cooling by conduction to the edge and radiation
- Rotating targets necessary for effective cooling at higher power sources (see next slide)
- Most protons (> 95%) pass through with little energy loss, so can be used to make neutrons

Muon Production Targets - II

PSI rotating wheel

J-PARC rotating wheel

Different pion decays - II

• "Surface" muons from pions at rest (in the target)

- Muons decay into the beamline
- Muons collected in one direction are 100% polarized
- Allows for simple beamline design but limits thickness of windows (and other material) before the sample
- Final spin polarization >95%

 \cdot "Forward" and "Backward" muons from pions in flight

- Needs a more complicated and lengthy beamline (£/CHF/\$/¥)
- Choice of momentum can be made for experiments allowing pressure cells etc. to be used
- Negative muons available
- Final spin polarization ~ 80%

BEAMLINE COMPONENTS

- Main problem low muon flux
- Other problems other particles transmitted and high radiation level at the sample

- Really needs more than one lens
 - First lens close to the source to capture large solid angle
 - Last lens close to the sample to give a small beam spot
- Still transmits many other particles poorly focussed if they have the wrong momentum
- Neutrons still go through
 - Unless blocked on axis

Electromagnetic lenses

Quadrupoles (£)

- $\cdot\,$ No deflection on axis
- Focussing (x) and defocussing (y)
- Therefore need doublets or triplets

Solenoids (£££)

 Able to focus both axes simultaneously

 Can also be built with bends for steering

Focussing with quadrupoles

- Doublets give different x and y magnification
- Triplets preserve image shape

Adding corners

 Still lets other particles through if they have the same momentum and charge

Cleaning the beam - Separator

- $\cdot\,$ Magnetic parts of the beamline only select momentum
- Need to separate surface muons (p=27 MeV/c, v=0.24c) from positrons with p=27 MeV/c (but v \approx c)
- Use perpendicular E and B fields chosen to balance forces for particles with correct velocity

Spin rotation – I

- Muons going round a magnetic bend:
 - Deflected by: $\theta = d B e / p$
 - Spin precession of: $\phi = B \gamma t = d B g e / 2p$
 - Exact match for g = 2.0, but muon g = 2.00233
 - Spin follows momentum unless there are many turns (like muon storage rings used to measure g-2)
- Electrostatic deflection leaves the spin unchanged but rotates the momentum
 - ISIS kicker gives 4° horizontal spin rotation for EMU and HiFi

d

Spin rotation – II

- A separator with crossed electric and magnetic fields rotates the spin without changing the momentum
 - ISIS separator gives 6° rotation (vertical)
- Using higher fields and/or longer path length gives bigger rotation
 - Ideal case is 90°, but diminishing returns beyond 70°
 - Useful for higher transverse fields because muons enter the sample along the field direction
 - Rotation of ~45° allows simultaneous measurement of longitudinal and transverse relaxation rates

Controlling spot size

Local collimation

- Lead near instrument
- Need to stop muons and their decay positrons from hitting detectors

Remote collimation

- Metal slits at a focal point earlier in beamline
- Positrons can't reach detectors

Dealing with pulsed beams

- Synchrotrons like ISIS normally output pairs of proton pulses
 - ISIS separation 330ns @ 50Hz (with 1 pulse in 5 missing)
- Separation normally less than muon lifetime so the spectra overlap, complicating data
- \cdot Need to separate pulses

Historical interlude

- Simplest way to separate pulses is to discard one
- This is how ISIS first did it (30 years ago)
- Device was called UPPSET (Uppsala, Pulse Eliminator and Trimmer)
- Removed the second pulse before it reached the MuSR instrument (then the only one)

A. I. Borden *et al.*, Nucl. Inst. and Methods A **292**, 21-29 (1990)

6 kV

12 kV

A modern kicker

 Why not throw away the pulse into instruments that can use it?

- ISIS south-side kicker is electrostatic
- RIKEN kicker is electromagnetic, better for high momentum muons

Other uses for kickers

Continuous source: Background reduction

 PSI have the MORE (muons on request) system to reduce background counts

Pulsed source: Increased frequency resolution

 ISIS and later J-PARC have demonstrated pulse slicing to narrow the muon pulses

Shutters for muons

- Being able to stop the muon beam is quite important
 - Safe sample changes
 - Not switching off the accelerator frequently
- Surface muons stopped by 5cm lead plates
 - Neutrons need ~1m of steel
- Also have interlock systems to prevent people meeting muons

Dai-Omega beamlines

e.g. H. Miyadera et al., Nucl. Phys. B **149**, 351-353 (2005)

PUTTING IT ALL TOGETHER

Beamlines for decay and surface muons

Figure from Jess Brewer

Examples from ISIS

South side (Surface muons only) North side (Surface/decay muons)

kicker: feeds quadrupole separator auadrupole dipole quadrupole muons to three focusing removes focusing steering focusing **800MeV** proton beam line Production target instruments contaminan naane magnets particles Port 3 dipol steering magnet MuSE Laser Cabin Pion injector Superconducting solenoid Port 4 production Cryogenic system Kicker target DC separators 800 MeV To neutron Proton beam target 2m Port 2 Port 1 Science & Technology Facilities Council ISIS Neutron and Muon Source

PLANNING AND DESIGNING BEAMLINES

Designing a beamline - I

- Use a program such as TRANSPORT to calculate focussing effect of elements – fairly quick calculation
- · Plots beam envelope along beamline

Designing a beamline - II

- Use a ray-tracing program such as TURTLE to work out paths of individual muons
- Slower calculation but more realistic and able to provide flux at sample and where other muons stop

GUI Input Editor			Turtle Histogram	20-Jan-05
/EC electrostatic kicked beam/	Loaded input file is current FOR001.DAT		Lego Plot No 7 (in) at z= 26.785 m (f)	16:44:21
	View in Listbox:	Insert:		
16. 190. 0. 100. ;	C Short © Long	<u>B</u> eam <u>E</u> dge	•	Mean1 = -0.298 RMS1 = 0.526
16. 3.0 206.7 /MUON/ ;	<u>Source</u> Second		r de la companya de la company	Mean2 = 0.004
16. 20.0 0.0 ; 📃		<u>D</u> rift <u>B</u> end		RMS2 = 0.520 Corr = 0.005
17. /SECO/ ;	Insert Mode:	Quad Slit		Area/pi = 0.274 Sum = 4777
13. 10.0 ;		<u>S</u> hift ≜liga		sum = 4777
3.0 0.15 ;	○ <u>B</u> efore ⊙ <u>A</u> fter			
6. 1.0 4.0 /HDW/ ;	· · · · · · · · · · · · · · · · · · ·	<u>R</u> epeat		
6. 3.0 4.0 /VDW/ ;	Info E <u>x</u> it	Accel Correl		
3. 0.35 ;		<u>I/O Matrix</u>		
16. 100. 13.7 13.7 ; 16. 101. 13.7 0.0 ;				
5. 0.701 -0.37542 13.7 /Q1/ ;	Move Element:	<u>U</u> nits <u>Special</u>		
3. 0.55 ;		<u>Second</u> <u>S</u> ext		
16. 100. 17.819 17.819 ;	<u>U</u> p <u>D</u> own	Solo Rotat		
16. 101.0 17.819 0.0 ;				
5. 0.66 0.23427 17.819 /Q2/ ;			х У	
3. 3.15 ;	<u>C</u> opy <u>P</u> aste	RFCay LdReg		
16. 5.0 7.5 ;		Cambin Octupole		
16. 7.0 0.45;	Edit Insert	Separator Solo-2		
16. 8.0 2.8 ;	<u>Fau</u> <u>inseu</u>			
6. 3.0 7.5 /B1V/ ;		<u>J</u> ump <u>d</u> E/d×		
2. 22.5 ;	<u>N</u> ew <u>D</u> elete	Histo-1 Hist-2.x		
4. 0.633 0.57918 0.0 /B1a/ ;		Hist-2.y Flag		
4. 0.633 0.57918 0.0 /B1b/ ; 🛛 🗹	Read Save			
		Decay		
				Technology Facilities Council eutron and Muon

Designing a beamline - III

- Monte-Carlo simulation programs such as GEANT4 can calculate beam transport too
- Most computationally intensive
- Best suited to modelling individual components or special cases
- e.g. Modelling of PSI LEM beamline and implementing a spin rotator Z. Salman *et al.*, Phys. Procedia **30**, 55 (2012)

BEAMLINE MONITORING

How to monitor your beamline

In the beamline itself

•

- Ideal case (£££) is measuring beam profile at several points
- Normally have some intermediate counters on slits or other apertures
 - Tuning the beamline magnet currents and E-fields to see what comes out is most common way to work out how optimal the set-up is

At the instrument

- How many muons come out?
 - On big plate/small sample
- What shape is the beam?
 - Camera or reference samples
- How far do the muons penetrate?
 - Stopping in metal foils in front of haematite or quartz
- How big is the signal as a function of frequency?

These are routine activities at muon facilities

FUTURE POSSIBILITIES

How to do things better?

Pulsed sources

- Higher pulse frequency (~20kHz ideal vs ~50Hz)
- \cdot Pulse slicing to increase frequency resolution
- Higher solid angle beam capture for higher flux

Continuous sources

- Higher fluxes could give very small beam sizes for tiny samples (< mm)
- Tracking muons and positrons could beat the '1 muon at a time' limit

Accelerators

 FFAGs and LINACs may provide better sources for muon production in future

Conclusions

- There are plenty of muons in the sky but you need a huge sample to use them
- Different sorts of particle accelerator are best suited to different sorts of muon experiment
- Transporting muons is well-understood and computer simulation can aid beamline design
- Plenty of scope for future improvements!

