Doing Chemistry with Muons

Stephen Cottrell
ISIS Facility, STFC Rutherford Appleton Lab
Outline

- Muons in materials
- Why do chemistry with muons?
- What we might learn?
- Examples
Muons in materials

μ^+

Diamagnetic
(bare positive muon)

Muonium, paramagnetic
(bound muon and electron)

States formed by fraction of muons on implantation
States often coexist
Why do chemistry with Muonium?

- Chemically equivalent to H-atom
 (similar Bohr radius, ionisation energy and reduced mass)
- Greatly extends isotopic mass comparison
 \(\frac{m_{\mu}}{m_H} \sim \frac{1}{9}; \frac{m_{\mu}}{m_D} \sim \frac{1}{18} \)
- High sensitivity … measurements in extreme dilution
 (we’re detecting the muon decay positron)
Chemically equivalent to H-atom …

Mu with undergo the same reactions as an H-atom …

Addition: Mu + R₂C=CH₂ → R₂ĊCH₂Mu

Abstraction: Mu + RX → MuX + R·

Radical Combin.: Mu + ·OH → MuOH

E- transfer: Mu + Xⁿ⁺ → µ⁺ + Xⁿ⁻¹⁺

...
Hyperfine coupling (hfc), A_μ and A_p, makes for an extremely sensitive probe species.
What we might learn?

Study atoms and molecules containing muons

- Reaction Rates
- Molecular structure
- Molecular dynamics
- Molecular environment
Reaction Kinetics …

Reaction rate constants, k_{Mu}, Activation energy, E_a, can be investigated …

Example: formation of cyclohexadienyl radical

Isotope effects seen both in k_{Mu} and in E_a

Molecular Structure …

Muon Avoided Level Crossing allows investigation of unpaired spin density across the C_{60} molecule …

Molecular Dynamics …

The dynamics of molecules tagged with a muon (in this case Benzene in a zeolite cage) can be investigated …

Line shape reflects mode of reorientation

Molecular Environment …

Solvent effects can be investigated. In this case Benzene in dilute aqueous solutions has been studied …

Signal shift defines shift in hyperfine parameters

Iain McKenzie will be talking about all this (and a great deal more) during his lectures on *Saturday morning*