Relaxation functions

P. Dalmas de Réotier

with invaluable contributions from A. Yaouanc

Interdisciplinary Research Institute of Grenoble
Université Grenoble Alpes & CEA
Grenoble, France.

International Advanced School in Muon Spectroscopy
STFC Rutherford Appleton Laboratory, Oxfordshire, UK
15th-23rd August 2019
Outline

Introduction: Larmor equation and polarisation functions

Static polarisation functions from a field distribution approach
 Transverse-field polarisation function
 Longitudinal-field polarisation function
 Effect of external field

Computation of the field distribution
 Nature of the field at the muon site
 Zero-field polarisation function in magnets
 Uncorrelated moments

Dynamical polarisation functions
 Stochastic approach: the weak and strong collision models
 Quantum approach
 Spin correlation functions

Correlations or not correlations

Stretched exponential function

Summary
Foreword

- Polarisation function vs relaxation function
- Statistics, probability and stochastic processes theory
- Most methodologies apply to transverse and longitudinal polarisation functions
- Background for the lecture is in the framework of magnetism or sometimes the diffusion of a light interstitial in a crystal
Foreword

- Polarisation function vs relaxation function
- Statistics, probability and stochastic processes theory
- Most methodologies apply to transverse and longitudinal polarisation functions
- Background for the lecture is in the framework of magnetism or sometimes the diffusion of a light interstitial in a crystal
Outline

Introduction: Larmor equation and polarisation functions

Static polarisation functions from a field distribution approach
 Transverse-field polarisation function
 Longitudinal-field polarisation function
 Effect of external field

Computation of the field distribution
 Nature of the field at the muon site
 Zero-field polarisation function in magnets
 Uncorrelated moments

Dynamical polarisation functions
 Stochastic approach: the weak and strong collision models
 Quantum approach
 Spin correlation functions

Correlations or not correlations

Stretched exponential function

Summary
The evolution of the muon spin $S_\mu(t)$

The Larmor equation

Basic principle of mechanics:
The time derivative of angular momentum is equal to the sum of the torques:

$$\frac{d\hbar S_\mu(t)}{dt} = m_\mu(t) \times B_{loc}(t).$$

Since

$$m_\mu = \gamma_\mu \hbar S_\mu,$$

by definition of the gyromagnetic ratio, we have

$$\frac{dS_\mu(t)}{dt} = \gamma_\mu S_\mu(t) \times B_{loc}(t).$$

$\gamma_\mu = 851.6 \text{ Mrad s}^{-1} \text{ T}^{-1}$.
Basics of motion properties deriving from the Larmor equation

From

\[\frac{dS_\mu(t)}{dt} = \gamma_\mu S_\mu(t) \times B_{\text{loc}}(t) \]

we deduce:

- \(\frac{dS_\mu(t)}{dt} \cdot S_\mu(t) = 0 \):
 \(S_\mu(t) \) is a constant of the motion, i.e. \(S_\mu(t) = S_\mu(0) \)

- \(\frac{dS_\mu(t)}{dt} \cdot B_{\text{loc}}(t) = 0 \):
 this implies \(\frac{dS_\mu(t)}{dt} \) is perpendicular to \(B_{\text{loc}}(t) \).
The transverse and longitudinal polarisation functions

- The polarisation function $P_\alpha(t)$ is the evolution of the projection of the muon ensemble polarisation along axis α:

$$P_\alpha(t) = \left\langle \frac{S_{\mu,\alpha}(t)}{S_\mu} \right\rangle.$$

- $S_\mu \equiv S_\mu(t = 0)$: initial muon beam polarisation

Transverse-field geometry

- $S_\mu \parallel X \rightarrow P_X(t)$ or $P_Y(t)$.

Longitudinal- or zero-field geometry

- $S_\mu \parallel Z \rightarrow P_Z(t)$.

Convention for the axes: B_{ext} is always parallel to Z.

- in transverse field experiment: $S_\mu \parallel X \rightarrow P_X(t)$ or $P_Y(t)$.
- in zero-field and longitudinal-field experiment: $S_\mu \parallel Z \rightarrow P_Z(t)$.

The muon spin evolution in a static field

Recall the Larmor equation,

\[\frac{dS_\mu(t)}{dt} = \gamma_\mu S_\mu(t) \times B_{\text{loc}}(t). \]

Assuming \(B_{\text{loc}}(t) = B_{\text{loc}} \), the solution is a precession motion:

\[S_\mu(t) = S_{\parallel\mu}(0) \mathbf{u} + S_{\perp\mu}(0)[\cos(\omega_\mu t) \mathbf{v} - \sin(\omega_\mu t) \mathbf{w}], \]

with \(\omega_\mu = \gamma_\mu B_{\text{loc}} \).

The precession frequency only depends on \(B_{\text{loc}} \), not on the angle between \(S_\mu \) and \(B_{\text{loc}} \)!
Outline

Introduction: Larmor equation and polarisation functions

Static polarisation functions from a field distribution approach
- Transverse-field polarisation function
- Longitudinal-field polarisation function
- Effect of external field

Computation of the field distribution
- Nature of the field at the muon site
- Zero-field polarisation function in magnets
- Uncorrelated moments

Dynamical polarisation functions
- Stochastic approach: the weak and strong collision models
- Quantum approach
- Spin correlation functions

Correlations or not correlations

Stretched exponential function

Summary
Outline

Introduction: Larmor equation and polarisation functions

Static polarisation functions from a field distribution approach
 Transverse-field polarisation function
 Longitudinal-field polarisation function
 Effect of external field

Computation of the field distribution
 Nature of the field at the muon site
 Zero-field polarisation function in magnets
 Uncorrelated moments

Dynamical polarisation functions
 Stochastic approach: the weak and strong collision models
 Quantum approach
 Spin correlation functions

Correlations or not correlations

Stretched exponential function

Summary
Transverse-field polarisation function

Per definition, $S_{\mu} \equiv S_{\mu}(t = 0) \parallel \mathbf{X}$.

From the solution of the Larmor equation,

$$S_{\mu}^X(t) = S_{\mu} \left\{ \left(\frac{B_{\text{loc}}^X}{B_{\text{loc}}} \right)^2 + 1 - \left(\frac{B_{\text{loc}}^X}{B_{\text{loc}}} \right)^2 \right\} \cos(\omega_{\mu} t),$$

$$S_{\mu}^X(t) = S_{\mu} \left\{ \cos^2 \theta + \sin^2 \theta \cos(\omega_{\mu} t) \right\},$$

with $B_{\text{loc}}^2 = (B_{\text{loc}}^X)^2 + (B_{\text{loc}}^Y)^2 + (B_{\text{loc}}^Z)^2$, and $\omega_{\mu} = \gamma_{\mu} B_{\text{loc}}$.

Let $D_{\nu}(B_{\text{loc}})$ be the distribution of static fields probed by the muons,

$$P_{\mu}^{\text{stat}}(t) = \left\langle \frac{S_{\mu}^X(t)}{S_{\mu}} \right\rangle = \int \left[\cos^2 \theta + \sin^2 \theta \cos(\omega_{\mu} t) \right] D_{\nu}(B_{\text{loc}}) \, d^3 B_{\text{loc}}.$$
Transverse-field polarisation function

Example: single field

Recall,

\[P_{\chi}^{\text{stat}}(t) = \int \left[\cos^2 \theta + \sin^2 \theta \cos(\omega_\mu t) \right] D_v(B_{\text{loc}}) d^3B_{\text{loc}}. \]

Assume all the muons to be submitted to \(B_{\text{loc}} = B_0 \parallel Z \), i.e. \(\theta = \pi/2 \),

\[P_{\chi}^{\text{stat}}(t) = \cos(\omega_0 t) \]

with \(\omega_0 = \gamma_\mu B_0 \).
Transverse-field polarisation function

Large transverse field

Recall,

\[P^{stat}_{X}(t) = \int [\cos^2 \theta + \sin^2 \theta \cos(\omega_\mu t)] D_v(B_{loc}) \, d^3B_{loc}. \]

Suppose \(B_{loc} \) to be dominated by \(B_{ext} \), i.e. \(\theta \approx \pi/2 \),

\[B_{loc} \approx |B^Z_{loc}|, \]

\[P^{stat}_{X}(t) = \int \cos(\omega_\mu t) D_c(B^Z_{loc}) \, dB^Z_{loc}, \]

\[= \left[\int D^{sh}_c(x) \cos(\gamma_\mu tx) \, dx \right] \cos(\gamma_\mu B_{ext} t). \]

The last line is obtained after the substitution \(B^Z_{loc} = B_{ext} + x \).

\(D^{sh}_c(x) \) is assumed to be an even function, otherwise a phase shift is present.
Transverse-field polarisation function

Example: typical distributions and associated polarisation functions

Gaussian distribution:

\[D_{\text{c} \text{sh}}^{\text{sh}}(B) = \frac{1}{\sqrt{2\pi}\Delta_G} \exp\left(\frac{-B^2}{2\Delta_G^2}\right) \]

\[P_{X \text{stat}}^\text{stat}(t) = \exp\left(\frac{-\gamma_{\mu}^2\Delta_G^2 t^2}{2}\right) \times \cos(\gamma_{\mu} B_{\text{ext}} t) \]

Example: nuclear dipoles

Lorentzian distribution:

\[D_{\text{c} \text{sh}}^{\text{sh}}(B) = \frac{1}{\pi} \frac{\Delta_L}{\Delta_L^2 + B^2} \]

\[P_{X \text{stat}}^\text{stat}(t) = \exp \left(-\gamma_{\mu} \Delta_L t \right) \times \cos(\gamma_{\mu} B_{\text{ext}} t) \]

Example: diluted magnetic systems
Transverse-field polarisation function
Example: Mixed phase of superconductors

Type II superconductors submitted to a magnetic field:

Field (deviation) profile in the flux-line lattice phase.

Associated field distribution.
Outline

Introduction: Larmor equation and polarisation functions

Static polarisation functions from a field distribution approach
- Transverse-field polarisation function
- Longitudinal-field polarisation function
- Effect of external field

Computation of the field distribution
- Nature of the field at the muon site
- Zero-field polarisation function in magnets
- Uncorrelated moments

Dynamical polarisation functions
- Stochastic approach: the weak and strong collision models
- Quantum approach
- Spin correlation functions

Correlations or not correlations

Stretched exponential function

Summary
Zero- or longitudinal-field polarisation function

Per definition, $S_\mu \equiv S_\mu (t = 0) \parallel Z$. From the solution of the Larmor equation,

$$S^Z_\mu (t) = S_\mu \left\{ \left(\frac{B^Z_{\text{loc}}}{B_{\text{loc}}} \right)^2 + 1 - \left(\frac{B^Z_{\text{loc}}}{B_{\text{loc}}} \right)^2 \right\} \cos(\omega_\mu t),$$

$$S^Z_\mu (t) = S_\mu \left[\cos^2 \theta + \sin^2 \theta \cos(\omega_\mu t) \right],$$

with $B^2_{\text{loc}} = (B^X_{\text{loc}})^2 + (B^Y_{\text{loc}})^2 + (B^Z_{\text{loc}})^2$ and $\omega_\mu = \gamma_\mu B_{\text{loc}}$.

Let $D_\nu (B_{\text{loc}})$ be the distribution of static fields probed by the muons,

$$P^\text{stat}_Z (t) = \left\langle \frac{S^Z_\mu (t)}{S_\mu} \right\rangle = \int [\cos^2 \theta + \sin^2 \theta \cos(\omega_\mu t)] D_\nu (B_{\text{loc}}) d^3 B_{\text{loc}}.$$
Zero-field polarisation function

Case of isotropic distribution

Recall

\[P_{Z}^{\text{stat}}(t) = \int [\cos^2 \theta + \sin^2 \theta \cos(\omega_{\mu} t)] D_v(B_{\text{loc}}) \, d^3 B_{\text{loc}}. \]

Assume \(D_v(B_{\text{loc}}) \, d^3 B_{\text{loc}} = D_v(B_{\text{loc}}) B_{\text{loc}}^2 \, dB_{\text{loc}} \sin \theta \, d\theta \, d\varphi, \)

\[P_{Z}^{\text{stat}}(t) = \frac{1}{3} + \frac{2}{3} \int 4\pi D_v(B_{\text{loc}}) B_{\text{loc}}^2 \cos(\omega_{\mu} t) \, dB_{\text{loc}}, \]

with \(\omega_{\mu} = \gamma_{\mu} B_{\text{loc}}. \)

Example: \(4\pi D_v(B_{\text{loc}}) B_{\text{loc}}^2 = \delta(B_{\text{loc}} - B_0) \)

ideal magnetic polycrystal

\[P_{Z}^{\text{stat}}(t) = \frac{1}{3} + \frac{2}{3} \cos(\gamma_{\mu} B_0 t) \]
Zero-field polarisation function

Example: Maxwell-Boltzmann distribution for B_{loc}

For isotropic Gaussian distributed B^α with rms Δ_G,

$$D_v(B) \, d^3B = \left(\frac{1}{\sqrt{2\pi}\Delta_G} \right)^3 \exp \left(\frac{-B^2}{2\Delta_G^2} \right) B^2 \, dB \sin \theta \, d\theta \, d\varphi,$$

$$D_m(B) = 4\pi D_v(B) B^2,$$

$$P_{\text{stat}}^Z(t) = P_{\text{KT}}(t) = \frac{1}{3} + \frac{2}{3}(1 - \gamma^2 \Delta_G^2 t^2) \exp \left(-\frac{\gamma^2 \Delta_G^2 t^2}{2} \right),$$

which is the so-called **Kubo-Toyabe function**.

Component distribution

Modulus distribution

Kubo-Toyabe function.

Minimum at $t = \sqrt{3}/\gamma \mu \Delta_G$
Outline

Introduction: Larmor equation and polarisation functions

Static polarisation functions from a field distribution approach
 Transverse-field polarisation function
 Longitudinal-field polarisation function
 Effect of external field

Computation of the field distribution
 Nature of the field at the muon site
 Zero-field polarisation function in magnets
 Uncorrelated moments

Dynamical polarisation functions
 Stochastic approach: the weak and strong collision models
 Quantum approach
 Spin correlation functions

Correlations or not correlations

Stretched exponential function

Summary
Effect of external field

Case of transverse B_{ext}

If B_{ext} is strong enough, recall

$$P_{X}^{\text{stat}}(t) = \left[\int D_{c}^{\text{sh}}(x) \cos(\gamma_{\mu}tx) \, dx \right] \cos(\gamma_{\mu}B_{\text{ext}}t).$$

Trivial effect of B_{ext} on oscillation frequency.

If width of distribution is non-negligible compared to B_{ext}, resort to general formula

$$P_{X}^{\text{stat}}(t) = \int \left[\cos^{2} \theta + \sin^{2} \theta \cos(\omega_{\mu}t) \right] D_{v}(B_{\text{loc}}) \, d^{3}B_{\text{loc}}.$$

Example: Gaussian field distribution

Towards the Kubo-Toyabe function
Effect of external field

Case of longitudinal B_{ext}

Recall,

$$P_{Z}^{\text{stat}}(t) = \int [\cos^2 \theta + \sin^2 \theta \cos(\omega \mu t)] D_v(B) \, d^3 B,$$

and the former isotropic Gaussian distribution.

Now the Z component of $D_v(B)$ is shifted:

$$D_v(B) \, d^3 B = \left(\frac{1}{\sqrt{2\pi} \Delta G} \right)^3 \exp \left(\frac{-B_X^2 - B_Y^2}{2\Delta_G^2} \right) \exp \left(\frac{-(B_Z - B_{\text{ext}})^2}{2\Delta_G^2} \right) \, dB_X \, dB_Y \, dB_Z.$$

► at large field: muon spin decoupling
► oscillations at $\gamma \mu B_{\text{ext}}$
► field dependence serves to ascertain the model
► sensitivity in the range $\Delta_G/5 \lesssim B_{\text{ext}} \lesssim 5\Delta_G$
Outline

Introduction: Larmor equation and polarisation functions

Static polarisation functions from a field distribution approach
 Transverse-field polarisation function
 Longitudinal-field polarisation function
 Effect of external field

Computation of the field distribution
 Nature of the field at the muon site
 Zero-field polarisation function in magnets
 Uncorrelated moments

Dynamical polarisation functions
 Stochastic approach: the weak and strong collision models
 Quantum approach
 Spin correlation functions

Correlations or not correlations

Stretched exponential function

Summary
Outline

Introduction: Larmor equation and polarisation functions

Static polarisation functions from a field distribution approach
 - Transverse-field polarisation function
 - Longitudinal-field polarisation function
 - Effect of external field

Computation of the field distribution
 - Nature of the field at the muon site
 - Zero-field polarisation function in magnets
 - Uncorrelated moments

Dynamical polarisation functions
 - Stochastic approach: the weak and strong collision models
 - Quantum approach
 - Spin correlation functions

Correlations or not correlations

Stretched exponential function

Summary
Origin of field at the muon site

- **nuclei**
 - high concentration of magnetic moments
 - quasi-static on τ_μ scale
 - disordered and no correlation

- **electrons**
 - high concentration of magnetic moments/structural order
 \rightarrow magnetically ordered phase
 \rightarrow paramagnetic phase (dynamical on τ_μ scale)
 - low concentration of magnetic moments/structural disorder (spin-glass)
 \rightarrow frozen state
 \rightarrow paramagnetic state (dynamical on τ_μ scale)

Muon life time $\tau_\mu = 2.2 \, \mu s$
The magnetic field at the muon site

Dipolar and Fermi contact fields

The dipolar field arising from localized spins J_j with Landé factors g is

$$ B_{dip} = -\frac{\mu_0}{4\pi} g \mu_B \sum_j \left[-\frac{J_j}{r_j^3} + 3\frac{(J_j \cdot r_j)r_j}{r_j^5} \right]. $$

r_j is the vector distance from the spin to the muon.

When a polarised electron density is present at the muon, an additional contribution is present, the Fermi contact field:

$$ B_{con} = -\frac{\mu_0}{4\pi} g \mu_B \sum_{j \in NN} H_j J_j. $$

Only the muon nearest neighbors (NN) usually contribute to B_{con}.

When both B_{dip} and B_{con} contribute to B_{loc} (i.e. in metals) they generally have the same order of magnitude.
The magnetic field at the muon site
Dipolar and Fermi contact fields

The dipolar field arising from localized spins J_j with Landé factors g is

$$B_{\text{dip}} = -\frac{\mu_0}{4\pi} g \mu_B \sum_j \left[-\frac{J_j}{r_j^3} + 3 \frac{(J_j \cdot r_j) r_j}{r_j^5} \right].$$

r_j is the vector distance from the spin to the muon.

When a polarised electron density is present at the muon, an additional contribution is present, the Fermi contact field:

$$B_{\text{con}} = -\frac{\mu_0}{4\pi} g \mu_B \sum_{j \in \text{NN}} H_j J_j.$$

Only the muon nearest neighbors (NN) usually contribute to B_{con}. When both B_{dip} and B_{con} contribute to B_{loc} (i.e. in metals) they generally have the same order of magnitude.
The magnetic field at the muon site

Dipolar and Fermi contact fields

The dipolar field arising from localized spins \mathbf{J}_j with Landé factors g is

$$\mathbf{B}_{\text{dip}} = -\frac{\mu_0}{4\pi} g \mu_B \sum_j \left[-\frac{\mathbf{J}_j}{r_j^3} + 3\frac{(\mathbf{J}_j \cdot \mathbf{r}_j) \mathbf{r}_j}{r_j^5} \right].$$

r_j is the vector distance from the spin to the muon.

When a polarised electron density is present at the muon, an additional contribution is present, the Fermi contact field:

$$\mathbf{B}_{\text{con}} = -\frac{\mu_0}{4\pi} g \mu_B \sum_{j \in \text{NN}} H_j \mathbf{J}_j.$$

Only the muon nearest neighbors (NN) usually contribute to \mathbf{B}_{con}.

When both \mathbf{B}_{dip} and \mathbf{B}_{con} contribute to \mathbf{B}_{loc} (i.e. in metals) they generally have the same order of magnitude.
The magnetic field at the muon site

Reciprocal space

\(B_{\text{dip}} \) and \(B_{\text{con}} \) linearly depending on \(J_j \),

\[
B_{\text{loc}} = B_{\text{dip}} + B_{\text{con}} = -\frac{\mu_0}{4\pi} \frac{g\mu_B}{v_c} \sum_j G_j J_j.
\]

\(G_j \) is the muon-spin \(j \) coupling tensor.

It is often a good idea to introduce the Fourier space quantities:

\[
G_q = \sum_j G_j \exp(iq \cdot r_j),
\]

\[
J_q = \frac{1}{\sqrt{n_c}} \sum_j J_j \exp(-iq \cdot j).
\]

Then,

\[
B_{\text{loc}} = -\frac{\mu_0}{4\pi} \frac{g\mu_B}{\sqrt{n_c} v_c} \sum_q \exp(-iq \cdot r_0) G_q J_q.
\]
Origin of field at the muon site

- **nuclei**
 - high concentration of magnetic moments
 - quasi-static on τ_μ scale
 - disordered and no correlation

- **electrons**
 - high concentration of magnetic moments/structural order
 - magnetically ordered phase
 - paramagnetic phase (dynamical on τ_μ scale)
 - low concentration of magnetic moments/structural disorder (spin-glass)
 - frozen state
 - paramagnetic state (dynamical on τ_μ scale)

Muon life time $\tau_\mu = 2.2$ μs
Outline

Introduction: Larmor equation and polarisation functions

Static polarisation functions from a field distribution approach
 Transverse-field polarisation function
 Longitudinal-field polarisation function
 Effect of external field

Computation of the field distribution
 Nature of the field at the muon site
 Zero-field polarisation function in magnets
 Uncorrelated moments

Dynamical polarisation functions
 Stochastic approach: the weak and strong collision models
 Quantum approach
 Spin correlation functions

Correlations or not correlations

Stretched exponential function

Summary
Zero-field polarisation function in magnets

Reminder:

- \(J_q = \frac{1}{\sqrt{n_c}} \sum_j \exp(-i \mathbf{q} \cdot \mathbf{j}) J_j \), \(J_j = \frac{1}{\sqrt{n_c}} \sum_q \exp(i \mathbf{q} \cdot \mathbf{j}) J_q \)

- **Ferromagnet:** \(J_q = 0 \) (\(J_q \neq 0 = 0 \))

- **Antiferromagnet:** \(J_q \) is finite only for \(\mathbf{q} = \pm \mathbf{k} \), where \(\mathbf{k} \) is the propagation wavevector of the magnetic structure.

In a \(\mu \)SR experiment several millions muons are implanted: they randomly localise in different unit cells of the crystal structure.
Zero-field polarisation function in magnets

Reminder:

- \[J_q = \frac{1}{\sqrt{n_c}} \sum_j \exp(-iq \cdot j)J_j, \quad J_j = \frac{1}{\sqrt{n_c}} \sum_q \exp(iq \cdot j)J_q \]

- **Ferromagnet:** \(J_q = 0 \) (\(J_q \neq 0 = 0 \))

- **Antiferromagnet:** \(J_q \) is finite only for \(q = \pm k \), where \(k \) is the propagation wavevector of the magnetic structure.

In a \(\mu \)SR experiment several millions muons are implanted: they randomly localise in different unit cells of the crystal structure.
Zero-field polarisation function in magnets

Reminder:

- $J_q = \frac{1}{\sqrt{n_c}} \sum_j \exp(-i \mathbf{q} \cdot \mathbf{j}) J_j$, $J_j = \frac{1}{\sqrt{n_c}} \sum_q \exp(i \mathbf{q} \cdot \mathbf{j}) J_q$

- **Ferromagnet:** $J_q = 0$ ($J_q \neq 0 = 0$)

- **Antiferromagnet:** J_q is finite only for $\mathbf{q} = \pm \mathbf{k}$, where \mathbf{k} is the propagation wavevector of the magnetic structure.

In a μSR experiment several millions muons are implanted: they randomly localise in different unit cells of the crystal structure.
Zero-field polarisation function in magnets

Reminder:

- $\mathbf{J}_q = \frac{1}{\sqrt{n_c}} \sum_j \exp(-i \mathbf{q} \cdot \mathbf{j}) J_j, \quad J_j = \frac{1}{\sqrt{n_c}} \sum_q \exp(i \mathbf{q} \cdot \mathbf{j}) J_q$

- **Ferromagnet:** $\mathbf{J}_q = 0 \ (J_q \neq 0 = 0)$

- **Antiferromagnet:** \mathbf{J}_q is finite only for $\mathbf{q} = \pm \mathbf{k}$, where \mathbf{k} is the propagation wavevector of the magnetic structure.

In a μSR experiment several millions muons are implanted: they randomly localise in different unit cells of the crystal structure.
Zero-field polarisation function in magnets

Commensurate magnets

Recall,

\[B_{\text{loc}} = -\frac{\mu_0 G\mu_B}{4\pi \sqrt{n_c v_c}} \sum_{q=0 \text{ or } q=\pm k} \exp(-i\mathbf{q} \cdot \mathbf{r}_0) G_q J_q. \]

An antiferromagnetic structure is commensurate if \(k = rQ \) where \(Q \) is a reciprocal lattice vector and \(r \) is a rational number.

\(\exp(-i\mathbf{q} \cdot \mathbf{r}_0) \) takes a finite number of values, so \(B_{\text{loc}} \) does.

Obviously, this is also true for a ferromagnet in which \(q = k = 0 \).

\(\exp(-i\mathbf{q} \cdot \mathbf{r}_0) \) takes a finite number of values, so \(B_{\text{loc}} \) does.

One (or more) muon spin precession frequency(ies).

\(\mu \text{SR} \) cannot directly tell whether a system is a ferro- or an antiferromagnet.
Zero-field polarisation function in magnets

Incommensurate magnets — spin density wave

Recall,
\[
B_{\text{loc}} = -\frac{\mu_0}{4\pi} \frac{g\mu_B}{\sqrt{n_c n_v}} \sum_{q=\pm k} \exp(-iq \cdot r_0) G_q J_q.
\]

For an incommensurate magnetic structure, \(k = sQ \) where \(s \) is an irrational number.
\(\rightarrow \) \(\exp(-iq \cdot r_0) \) takes an infinite number of values,
\(\rightarrow \) a continuous distribution of \(B_{\text{loc}} \) is expected.
Zero-field polarisation function in magnets
Spin density wave, simple case (1)

Recall,

\[B_{\text{loc}} = -\frac{\mu_0}{4\pi} \frac{g\mu_B}{\sqrt{n_c v_c}} \sum_{q=\pm k} \exp(-i\mathbf{q} \cdot \mathbf{r}_0) G_q \mathbf{J}_q. \]

Assume that the vectors \(B_{\text{loc}} \) remain collinear when \(\mathbf{q} \cdot \mathbf{r}_0 \) spans the interval \([0, 2\pi]\), then

\[B_{\text{loc}} = \cos \alpha B_{\text{max}}, \quad \text{with } \alpha \in [0, 2\pi]. \]
Zero-field polarisation function in magnets

Spin density wave, simple case (2)
Assume for simplicity $\mathbf{B}_{\text{max}} \parallel \mathbf{X}$,

$$D_c(B_X) = \int \delta(B_X - B_{\text{loc},X}) dB_{\text{loc},X} = \frac{\int_0^{2\pi} \delta(B_X - B_{\text{max}} \cos \alpha) \, d\alpha}{\int_0^{2\pi} d\alpha} = \frac{1}{\pi} \frac{1}{\sqrt{B_{\text{max}}^2 - B_X^2}},$$

$$P^{\text{stat}}_Z(t) = \int_{-B_{\text{max}}}^{B_{\text{max}}} D_c(B_X) \cos(\gamma \mu B_X t) \, dB_X = J_0(\gamma \mu B_{\text{max}} t)$$

$J_0(x)$: zeroth-order Bessel function of the first kind.

- For $x \ll 1$, $J_0(x) \rightarrow 1 - x^2/4$
- For $x \rightarrow \infty$, $J_0(x) \rightarrow \sqrt{2/\pi x} \cos(x - \pi/4)$: $\pi/4$ dephasing of oscillations
Zero-field polarisation function in magnets
Spin density wave, general case

\[B_{\text{loc}} = \cos \alpha B_{\text{max}} + \sin \alpha B_{\text{min}}, \text{ with } B_{\text{max}} \perp B_{\text{min}}. \]

The ellipse follows from the anisotropy of the dipolar interaction.

\[D_m(B) = \frac{2B}{\pi \sqrt{B_{\text{max}}^2 - B^2} \sqrt{B^2 - B_{\text{min}}^2}}. \]

\[D_m(B) \text{ and } P_Z(t) \text{ in the case } \]
\[B_{\text{max}} = 2B_{\text{min}} \]
\[\text{and} \]
\[B_{\text{max}}, B_{\text{min}} \perp Z \]

Real life case of MnSi
(helical spin density wave):
\[\begin{align*}
 &\triangleright B_{\text{max}} \text{ and } B_{\text{min}} \text{ not } \perp Z, \\
 &\triangleright \text{four magnetic muon sites,} \\
 &\triangleright \text{four magnetic domains.}
\end{align*} \]
Outline

Introduction: Larmor equation and polarisation functions

Static polarisation functions from a field distribution approach
 - Transverse-field polarisation function
 - Longitudinal-field polarisation function
 - Effect of external field

Computation of the field distribution
 - Nature of the field at the muon site
 - Zero-field polarisation function in magnets
 - Uncorrelated moments

Dynamical polarisation functions
 - Stochastic approach: the weak and strong collision models
 - Quantum approach
 - Spin correlation functions

Correlations or not correlations

Stretched exponential function

Summary
Consider magnetic impurities randomly distributed in a matrix of non-magnetic sites. With the notations

- j for a site among a total of N,
- c_{imp} for the occupation probability of an impurity (possibly $c_{\text{imp}} = 1$),
- $B_{Z,j}$ for the Z component of the field at the muon arising from atom at site j,
- $w_j(B_{Z,j})$ for the distribution of field $B_{Z,j}$ produced at the muon by impurity at site j,

\[
D_{\text{sh}}(B_Z) = \int \cdots \int \delta \left(B_Z - \sum_{j=1}^{N} B_{Z,j} \right) \prod_{j=1}^{N} \left[(1 - c_{\text{imp}}) \delta(B_{Z,j}) + c_{\text{imp}} w_j(B_{Z,j}) \right] dB_{Z,1} \cdots dB_{Z,N}.
\]

The distributions due to the impurities are assumed to be independent, hence $\prod_{j=1}^{N}$. We will take $B_{Z,j} = -\frac{\mu_0}{4\pi} J_{Z,j} \frac{g_i \mu_B}{r_j^3} (3 \cos^2 \theta_j - 1)$, i.e. the impurity dipole field.
Computation of field distributions
Uncorrelated moments, high-transverse field case, extreme dilution limit ($c_{\text{imp}} \ll 1$)

Computation of the characteristic function

$$G_{\text{TF}}(t) = \int \exp(i\gamma \mu B_Z t) D_c^{\text{sh}}(B_Z) \, dB_Z,$$

for $c_{\text{imp}} \ll 1$, i.e. the large dilution limit:

$$G_{\text{TF}}(t) = \exp(-\gamma \mu \Delta L |t|),$$

with $\Delta L = K_L \frac{\mu_0}{4\pi} \rho_{\text{vol}} c_{\text{imp}} g \mu_B \langle |m| \rangle$, where ρ_{vol} is number of sites per unit volume, the m’s are the eigenvalues of J_Z and $K_L \approx 2.5325$ (case where each impurity has its own quantisation axis).

From an inverse Fourier transform of $G_{\text{TF}}(t)$,

$$D_c^{\text{sh}}(B_Z) = \frac{1}{\pi} \frac{\Delta L}{\Delta_L^2 + B_Z^2}$$

i.e. a Lorentzian or Cauchy distribution.
Computation of field distributions
Uncorrelated moments, high-transverse field case, $c_{\text{imp}} = 1$

The characteristic function is

$$G_{TF}(t) \approx \exp \left(-\frac{\gamma \mu \Delta^2_G t^2}{2} \right),$$

in the short-time limit, with $\Delta^2_G = \frac{1}{3} \left(\frac{\mu_0}{4\pi} \right)^2 \sum_{j=1}^{N} \frac{g^2 \mu_B^2}{r_j^6} \langle J^2_Z \rangle (1 - 3 \cos^2 \theta_j)^2$.

Extremely fast convergence of the sum, due to the r_j^{-6} factor.

Case of nuclear dipoles: the $2J + 1$ Zeeman levels of J_Z are equipopulated, hence $\langle J^2_Z \rangle = J(J + 1)/3$. The initial $1/3$ factor drops when all the nuclei have the same quantisation axis.

From an inverse Fourier transform of $G_{TF}(t)$,

$$D_{c}^{\text{sh}}(B_Z) = \frac{1}{\sqrt{2\pi \Delta_G}} \exp \left(-\frac{B_Z^2}{2\Delta^2_G} \right),$$

i.e. a Gaussian distribution.
Computation of field distributions
Uncorrelated moments, zero-field case, $c_{\text{imp}} \ll 1$

Procedure similar to the high transverse field case:

$$D_v(B) = \int \cdots \int \delta \left(B - \sum_{i=1}^{N} B_i \right) \prod_{i=1}^{N} \left[(1 - c_{\text{imp}})\delta(B_i) + c_{\text{imp}}w_i(B_i)\right] dB_1 \ldots dB_N.$$

For $c_{\text{imp}} \ll 1$,

$$G_{ZF}(t) = \exp(-\gamma \mu \Delta_L t),$$

with $\Delta_L = K_L \mu_0 \rho_{\text{vol}} c_{\text{imp}} g \mu_B \langle |m| \rangle$, where $K_L \approx 4.5406$.

Since $G_{ZF}(t)$ only depends on t, $D_v(B)$ is isotropic with

$$D_v(B) = D_v(B) = \frac{1}{\pi^2} \frac{\Delta_L}{\left(\Delta_L^2 + B^2 \right)^2}.$$
Recap on the static polarisation functions

- Computation of $P_{\chi,Z}^{\text{stat}}(t)$ assuming a field distribution
- Nature of field at the muon site (dipole and Fermi contact)
- Derivation of $D_c(B_Z)$ and $D_v(B)$ for usual physical situations
Outline

Introduction: Larmor equation and polarisation functions

Static polarisation functions from a field distribution approach
 Transverse-field polarisation function
 Longitudinal-field polarisation function
 Effect of external field

Computation of the field distribution
 Nature of the field at the muon site
 Zero-field polarisation function in magnets
 Uncorrelated moments

Dynamical polarisation functions
 Stochastic approach: the weak and strong collision models
 Quantum approach
 Spin correlation functions

Correlations or not correlations

Stretched exponential function

Summary
Outline

Introduction: Larmor equation and polarisation functions

Static polarisation functions from a field distribution approach
- Transverse-field polarisation function
- Longitudinal-field polarisation function
- Effect of external field

Computation of the field distribution
- Nature of the field at the muon site
- Zero-field polarisation function in magnets
- Uncorrelated moments

Dynamical polarisation functions
- Stochastic approach: the weak and strong collision models
- Quantum approach
- Spin correlation functions

Correlations or not correlations

Stretched exponential function

Summary
The Larmor equation

\[\frac{dS_\mu(t)}{dt} = \gamma_\mu S_\mu(t) \times B_{\text{loc}}(t), \]

is still valid.

However it is difficult to solve it when \(B_{\text{loc}}(t) \) is a stochastic variable.
Stochastic account of dynamics

We compute $P_\alpha(t)$ for two different models.

Hypothesis for both models:
- $B_{\text{loc}}(t)$ follows a stationary Gaussian-Markovian process, i.e.
 - independent of origin of time
 - $B^\alpha_{\text{loc}}(t)$ belongs to a Gaussian distribution
 - $B_{\text{loc}}(t)$ evolves in jumps, with a hopping probability which does not depend on the system state before the jump.

Doob’s theorem (1942):

$$\langle B_{\text{loc}}^{\alpha}(t_0)B_{\text{loc}}^{\alpha}(t_0 + t) \rangle = \langle (B_{\text{loc}}^{\alpha})^2 \rangle \exp (-\nu_c |t|)$$

where $\nu_c^{-1} = \tau_c$ is the field correlation time.
Outline

Introduction: Larmor equation and polarisation functions

Static polarisation functions from a field distribution approach
 - Transverse-field polarisation function
 - Longitudinal-field polarisation function
 - Effect of external field

Computation of the field distribution
 - Nature of the field at the muon site
 - Zero-field polarisation function in magnets
 - Uncorrelated moments

Dynamical polarisation functions
 - Stochastic approach: the weak and strong collision models
 - Quantum approach
 - Spin correlation functions

Correlations or not correlations

Stretched exponential function

Summary
The weak collision model (1)

Computation of $P_X(t)$

Recall, for a single static field $B_{\text{loc}}^Z = B_0$,

$$P_X^{\text{stat}}(t) = \cos(\omega_0 t)$$

with $\omega_0 = \gamma \mu B_0$.

For $B_{\text{loc}}^Z(t)$, the phase at time t is

$$\gamma \mu B_{\text{loc}}^Z(t_0) (t_1 - t_0) + \ldots + \gamma \mu B_{\text{loc}}^Z(t_{n-1}) (t_n - t_{n-1}) = \int_0^t \gamma \mu B_{\text{loc}}^Z(t') dt'.$$

After averaging over the muon ensemble

$$P_X(t) = \mathcal{R}e \left\{ \left< \exp \left[i \int_0^t \gamma \mu B_{\text{loc}}^Z(t') dt' \right] \right> \right\}.$$
The weak collision model (2)

Computation of $P_X(t)$

Now, for a stationary Gaussian process,

$$
\left\langle \exp \left[i \int_0^t \gamma_\mu \delta B_{1 loc}^Z (t') dt' \right] \right\rangle = \exp \left[- \int_0^t dt' \int_0^t \gamma_\mu^2 \left\langle \delta B_{1 loc}^Z \delta B_{1 loc}^Z (t' - t'') \right\rangle dt'' \right],
$$

where $\delta B_{1 loc}^Z (t') = B_{1 loc}^Z (t') - \langle B_{1 loc}^Z \rangle$. Using Doob's theorem and the relation

$$
\int_0^t dt' \int_0^t f(t' - t'') dt'' = 2 \int_0^t (t - \tau)f(\tau)d\tau
$$

where $f(t)$ is an even function, we get

$$
P_X(t) = \exp \left\{ - \frac{\gamma_\mu^2 \Delta_G^2}{\nu_c^2} \left[\exp(-\nu_c t) - 1 + \nu_c t \right] \right\} \cos \left(\gamma_\mu \langle B_{1 loc}^Z \rangle t \right),
$$

with $\Delta_G^2 = \left\langle \left(\delta B_{1 loc}^Z \right)^2 \right\rangle$.

This is the so-called Abragam formula (Anderson, 1954).
The weak collision model (2)

Computation of $P_X(t)$

Now, for a stationary Gaussian process,

$$\langle \exp \left[i \int_0^t \gamma \mu \delta B_{\text{loc}}^Z(t') dt' \right] \rangle = \exp \left[- \int_0^t dt' \int_0^t \gamma \mu^2 \langle \delta B_{\text{loc}}^Z \delta B_{\text{loc}}^Z (t' - t'') \rangle dt'' \right],$$

where $\delta B_{\text{loc}}^Z(t') = B_{\text{loc}}^Z(t') - \langle B_{\text{loc}}^Z \rangle$. Using Doob's theorem and the relation

$$\int_0^t dt' \int_0^t f(t' - t'') dt'' = 2 \int_0^t (t - \tau)f(\tau)d\tau$$

where $f(t)$ is an even function, we get

$$P_X(t) = \exp \left\{ - \gamma \mu^2 \Delta_G^2 \frac{\nu_c^2}{\nu_c^2} \left[\exp(-\nu_c t) - 1 + \nu_c t \right] \right\} \cos \left(\gamma \mu \langle B_{\text{loc}}^Z \rangle t \right),$$

with $\Delta_G^2 = \langle \left(\delta B_{\text{loc}}^Z \right)^2 \rangle$.

This is the so-called Abragam formula (Anderson, 1954).
The Abragam function

\[P_X(t) = \exp \left\{ -\frac{\gamma^2 \Delta_G^2}{\nu_c^2} \left[\exp(-\nu_c t) - 1 + \nu_c t \right] \right\} \cos \left(\gamma \mu \langle B^Z_{\text{loc}} \rangle t \right) \]

- For \(\nu_c \ll \gamma \mu \Delta_G \),
 \[P_X(t) = \exp \left(-\frac{\gamma^2 \Delta_G^2}{\nu_c^2} t^2 / 2 \right) \cos \left(\gamma \mu \langle B^Z_{\text{loc}} \rangle t \right). \]

- For \(\nu_c \gg \gamma \mu \Delta_G \),
 \[P_X(t) = \exp(-\lambda_X t) \cos \left(\gamma \mu \langle B^Z_{\text{loc}} \rangle t \right), \]

with \(\lambda_X = \frac{\gamma^2 \Delta_G^2}{\nu_c} = \frac{\gamma^2 \Delta_G^2 \tau_c}{\nu_c} \).

This is the so-called extreme motional narrowing limit (NMR language).
The strong collision model (1)

Computation of $P_Z(t)$

Let ℓ be the number of changes for $B_{\text{loc}}(t)$ during the muon life time,

$$P_Z(t) = \sum_{\ell=0}^{+\infty} R_{\ell}(t),$$

where $R_{\ell}(t)$ is the contribution to $P_Z(t)$ of muons which have experienced ℓ field changes between 0 and t.

Now,

$$R_0(t) = P^\text{stat}_Z(t) \exp(-\nu_c t),$$

since the probability for $B_{\text{loc}}(t)$ to be unchanged between 0 and t is $\exp(-\nu_c t)$.
The strong collision model (2)

Computation of $P_Z(t)$

- For $\ell = 1$ field change and since the process is Gaussian-Markovian,

$$R_1(t) = \left\langle \int_0^t \frac{S^Z_{\mu,j}(t - t')}{{S_\mu}} \exp[-\nu_c(t - t')] \nu_c \frac{S^Z_{\mu,i}(t')}{{S_\mu}} \exp(-\nu_c t') dt' \right\rangle_{ij}$$

$$= \nu_c \int_0^t R_0(t - t') R_0(t') dt'.$$

- Recursion relation:

$$R_{\ell+1}(t) = \nu_c \int_0^t R_\ell(t - t') R_0(t') dt'.$$

- From the previous relation and the definition $P_Z(t) = \sum_{\ell=0}^{+\infty} R_\ell(t)$,

$$\sum_{\ell=0}^{+\infty} R_{\ell+1}(t) = \nu_c \int_0^t P_Z(t - t') R_0(t') dt' = P_Z(t) - R_0(t),$$

...
The strong collision model (3)

Computation of $P_Z(t)$

which can be rewritten as the integral equation

$$P_Z(t) = P_Z^{\text{stat}}(t) \exp(-\nu_c t) + \nu_c \int_0^t P_Z(t - t') P_Z^{\text{stat}}(t') \exp(-\nu_c t') \, dt',$$

or in terms of Laplace transforms ($f(s) = \int_0^{+\infty} f(t) \exp(-st) \, dt$),

$$P_Z(s) = \frac{P_Z^{\text{stat}}(s + \nu_c)}{1 - \nu_c P_Z^{\text{stat}}(s + \nu_c)}.$$

- Laplace transforms useful for studying analytical behaviour of $P_Z(t)$
- For numerical purposes, solving numerically the integral equation is efficient
Dynamical polarisation functions

$P_Z(t)$ in zero external field for an isotropic Gaussian distribution

Recall

$$P_Z^\text{stat}(t) = P_{KT}(t) = \frac{1}{3} + \frac{2}{3}(1 - \gamma^2 \Delta^2_G t^2) \exp\left(- \frac{\gamma^2 \Delta^2_G t^2}{2}\right),$$

- For $\nu_c \ll \gamma \mu \Delta_G$,

 $$P_Z(t) \simeq \frac{1}{3} \exp\left(- \frac{2}{3} \nu_c t\right) + \frac{2}{3}(1 - \gamma^2 \Delta^2_G t^2) \exp\left(- \frac{\gamma^2 \Delta^2_G t^2}{2}\right).$$

 High sensitivity to slow dynamics.

- For $\nu_c \gtrsim \gamma \mu \Delta_G$,

 $$P_Z(t) = \exp\left\{-2 \frac{\gamma^2 \Delta^2_G}{\nu^2_c} \left[\exp(-\nu_c t) - 1 + \nu_c t\right]\right\}. $$

- For $\nu_c \gg \gamma \mu \Delta_G$,

 $$P_Z(t) = \exp(-\lambda_Z t),$$

 with $$\lambda_Z = 2\frac{\gamma^2 \Delta^2_G}{\nu_c}.$$ (extreme motional narrowing limit).
Dynamical polarisation functions

$P_Z(t)$ in a longitudinal field for an isotropic Gaussian distribution

For $\nu_c \gg \gamma_\mu \Delta_G$,

$$P_Z(t) = \exp(-\lambda_Z t),$$

with

$$\lambda_Z = \frac{2\gamma_\mu^2 \Delta_G^2 \nu_c}{\nu_c^2 + \omega_\mu^2}$$

(Redfield formula) and $\omega_\mu = \gamma_\mu B_{\text{ext}}$.

Determination of ν_c from $\lambda_Z(B_{\text{ext}})$

$$P_Z(t) \text{ for } B_{\text{ext}} = 3\Delta_G.$$
Dynamical polarisation functions

The case of dilute spin glasses (1)

Recall

\[D_{c}^{sh}(B_{Z}) = \frac{1}{\pi} \frac{\Delta L}{\Delta L^2 + B_{Z}^2}, \]

\[D_{v}(B) = \frac{1}{\pi^2} \frac{\Delta L}{(\Delta L^2 + B^2)^2}, \]

Muons far from any magnetic site have no chance to experience a large field \(\rightarrow \) Gaussian-Markovian hypothesis breaks.
Dynamical polarisation functions
The case of dilute spin glasses (2)

To cope with the breakdown, we compute the dynamical polarisation function for muons at a given position and perform the spatial average in a second step.

We write

$$P_{Z \text{stat}}(t) = \int P_{KT}(t) \rho_{\Delta_L}(\Delta_G) d\Delta_G,$$

such that

$$P_{Z \text{stat}}(t) = \frac{1}{3} + \frac{2}{3} (1 - \gamma \mu \Delta_L t) \exp(-\gamma \mu \Delta_L t),$$

is the static function for muons in a dilute magnetic system.

The function

$$\rho_{\Delta_L}(\Delta_G) = \sqrt{\frac{2}{\pi} \frac{\Delta_L}{\Delta_G^2}} \exp\left(-\frac{\Delta_L^2}{2\Delta_G^2}\right),$$

fulfils the requirement. Then

$$P_Z(t) = \int P_{DKT}(t) \rho_{\Delta_L}(\Delta_G) d\Delta_G.$$
Dynamical polarisation functions

The case of dilute spin glasses (3)

For $\nu_c \ll \gamma_\mu \Delta_L$,

$$P_Z(t) \simeq \frac{1}{3} \exp \left(-\frac{2}{3} \nu_c t \right) + \frac{2}{3} (1 - \gamma_\mu \Delta_L t) \exp (-\gamma_\mu \Delta_L t).$$

High sensitivity to slow dynamics.

For $\nu_c \gtrsim \gamma_\mu \Delta_L$,

$$P_Z(t) = \exp \left\{ -\sqrt{\frac{4\gamma_\mu^2 \Delta_L^2}{\nu_c^2}} \left[\exp(-\nu_c t) - 1 + \nu_c t \right] \right\}.$$

For $\nu_c \gg \gamma_\mu \Delta_L$,

$$P_Z(t) = \exp \left(-\sqrt{\frac{4\gamma_\mu^2 \Delta_L^2 t}{\nu_c}} \right).$$
Outline

Introduction: Larmor equation and polarisation functions

Static polarisation functions from a field distribution approach
 Transverse-field polarisation function
 Longitudinal-field polarisation function
 Effect of external field

Computation of the field distribution
 Nature of the field at the muon site
 Zero-field polarisation function in magnets
 Uncorrelated moments

Dynamical polarisation functions
 Stochastic approach: the weak and strong collision models
 Quantum approach
 Spin correlation functions

Correlations or not correlations

Stretched exponential function

Summary
The polarisation functions from a quantum approach
A flavour for zero- and longitudinal-field experiments

Consider the Zeeman states of the muon spin (spin 1/2),

\[\hbar \omega_{\mu} \]

At thermodynamical equilibrium, the populations of the two states are equal since

\[\hbar \omega_{\mu} \ll k_B T. \]

Indeed, for \(B_{\text{loc}} = 1 \) T, \(\hbar \omega_{\mu} = 0.56 \) \(\mu \text{eV} \) (\(= k_B T \) for \(T = 6.5 \) mK).
The polarisation functions from a quantum approach

Derivation of $P_Z(t)$ (1)

Recall Stephen Blundell’s lecture,

\[
P_Z(t) = 2 \text{Tr} \left[\rho_s S^Z_\mu S^Z_\mu (t) \right]
\]

with

\[
S^Z_\mu (t) = \exp \left(i \frac{\mathcal{H} t}{\hbar} \right) S^Z_\mu \exp \left(-i \frac{\mathcal{H} t}{\hbar} \right)
\]

where ρ_s is the density operator and \mathcal{H} is the Hamiltonian for the muon-system ensemble.
The polarisation functions from a quantum approach

Derivation of $P_Z(t)$ (2)

After some computation,

$$P_Z(t) \simeq \exp[-\psi_Z(t)]$$

with

$$\psi_Z(t) = 2\pi \gamma^2 \mu \int_0^t (t - \tau) \cos(\omega_\mu \tau) \left[\Phi^{XX}(\tau) + \Phi^{YY}(\tau) \right] d\tau.$$

where $\Phi^{\alpha\beta}(\tau) = \frac{1}{4\pi} \left[\langle \delta B^\alpha_\text{loc}(\tau) \delta B^{\beta}_\text{loc} \rangle + \langle \delta B^{\beta}_\text{loc} \delta B^\alpha_\text{loc}(\tau) \rangle \right]$ is the field correlation function and $\omega_\mu = \gamma_\mu B_{\text{ext}}$.
The polarisation functions from a quantum approach

Derivation of $P_Z(t)$ (3)

Assuming $\Phi^{\alpha\beta}(\tau)$ to decay rapidly on the μSR time t scale, we get $\psi_Z(t) = \lambda_Z t$ with

$$\lambda_Z = \pi \gamma^2 \mu \left[\Phi^{XX}(\omega) + \Phi^{YY}(\omega) \right].$$

$\Phi^{\alpha\beta}(\omega)$ is the time Fourier transform of $\Phi^{\alpha\beta}(\tau)$.

If $\Phi^{\alpha\alpha}(\tau) = \frac{1}{2\pi} \langle (\delta B_{\text{loc}}^\alpha)^2 \rangle \exp(-\nu_c |\tau|)$

- $B_{\text{ext}} = 0$,

 $$\lambda_Z = \gamma^2 \mu \left(\langle (\delta B_{\text{loc}}^X)^2 \rangle + \langle (\delta B_{\text{loc}}^Y)^2 \rangle \right) / \nu_c,$$

 which can be identified to

 $$\lambda_Z = 2\gamma^2 \mu \Delta_G^2 / \nu_c.$$

- for any B_{ext}, assuming $\Phi^{\alpha\alpha}(\tau)$ independent of B_{ext},

 $$\lambda_Z = \frac{2\gamma^2 \mu \Delta_G^2 \nu_c}{\nu_c^2 + \omega^2_\mu}.$$

This is again Redfield's formula.
Outline

Introduction: Larmor equation and polarisation functions

Static polarisation functions from a field distribution approach
 Transverse-field polarisation function
 Longitudinal-field polarisation function
 Effect of external field

Computation of the field distribution
 Nature of the field at the muon site
 Zero-field polarisation function in magnets
 Uncorrelated moments

Dynamical polarisation functions
 Stochastic approach: the weak and strong collision models
 Quantum approach
 Spin correlation functions

Correlations or not correlations

Stretched exponential function

Summary
The magnetic field at the muon site

The dipolar field arising from localized spins J_j with Landé factors g is

$$B_{\text{dip}} = -\frac{\mu_0}{4\pi} g \mu_B \sum_j \left[-\frac{J_j}{r_j^3} + 3\frac{(J_j \cdot r_j) r_j}{r_j^5} \right].$$

r_j is the vector distance from the spin to the muon.

When a polarised electron density is present at the muon, an additional contribution is present, the Fermi contact field:

$$B_{\text{con}} = -\frac{\mu_0}{4\pi} g \mu_B \sum_{j \in \text{NN}} H_j J_j.$$

Only the muon nearest neighbors (NN) usually contribute to B_{con}. When both B_{dip} and B_{con} contribute to B_{loc} (i.e. in metals) they generally have the same order of magnitude.

Altogether

$$B_{\text{loc}} = B_{\text{con}} + B_{\text{con}} = -\frac{\mu_0}{4\pi} \frac{g \mu_B \nu_c}{\nu} \sum_j G_j J_j.$$

G is the muon-spin j coupling tensor.
Spin-lattice relaxation rate λ_Z and spin-correlation function

From

$$\lambda_Z = \pi \gamma_\mu^2 \left[\Phi^{XX}(\omega_\mu) + \Phi^{YY}(\omega_\mu) \right],$$

introducing the space Fourier transform,

$$J(q) = \frac{1}{\sqrt{n_c}} \sum_j J_j \exp(-i q \cdot j),$$

we get

$$\lambda_Z = \frac{D}{2} \int \sum_{\alpha \beta} A^{\alpha \beta}(q) \Lambda^{\alpha \beta}(q, \omega_\mu) \frac{d^3q}{(2\pi)^3}.$$

$$\Lambda^{\alpha \beta}(q, \omega) = \frac{1}{2} \left[\langle \delta J^\alpha(q, \omega) \delta J^\beta(-q) \rangle + \langle \delta J^\beta(-q) \delta J^\alpha(q, \omega) \rangle \right]$$

is the spin correlation tensor,

$$A^{\alpha \beta}(q) = G^{X\alpha}(q)G^{X\beta}(q) + G^{Y\alpha}(q)G^{Y\beta}(q)$$

is the muon-system coupling factor, and

$$D = \left(\frac{\mu_0}{4\pi} \right)^2 \gamma_\mu^2 (g \mu_B)^2 / \nu_c.$$
Spin-lattice relaxation rate λ_Z and spin-correlation function

Recall

$$\lambda_Z = \frac{D}{2} \int \sum_{\alpha\beta} A^{\alpha\beta}(q) \Lambda^{\alpha\beta}(q, \omega_{\mu}) \frac{d^3q}{(2\pi)^3}. \quad (1)$$

λ_Z is an integral of the spin-correlation function taken near 0 energy (neV to μeV range) over the Brillouin zone with a weighting factor depending on the muon site.
Outline

Introduction: Larmor equation and polarisation functions

Static polarisation functions from a field distribution approach
 Transverse-field polarisation function
 Longitudinal-field polarisation function
 Effect of external field

Computation of the field distribution
 Nature of the field at the muon site
 Zero-field polarisation function in magnets
 Uncorrelated moments

Dynamical polarisation functions
 Stochastic approach: the weak and strong collision models
 Quantum approach
 Spin correlation functions

Correlations or not correlations

Stretched exponential function

Summary
Superposition of uncorrelated field distributions

The distribution resulting from independent distributions is the convolution product of each of the distributions.

- **High transverse field case**
 - The evaluation of $P^\text{stat}_X(t)$ is trivial since its envelope is the inverse Fourier transform of $D^\text{sh}_c(B_Z)$
 - Example: a dilute spin glass in a matrix of atoms with nuclear moments
 \[
 P^\text{stat}_X(t) = \exp \left(\frac{-\gamma^2 \Delta^2 t^2}{2} \right) \exp (-\gamma \mu \Delta_L t) \cos(\gamma \mu B_{ext} t)
 \]

- **Zero-field case**
 - Trivial case of Gaussian distributions, since the convolution of Gaussians is a Gaussian
 - Much trickier situation in the other cases, since $P^\text{stat}_Z(t)$ is not expressed as an inverse Fourier transform
 - Beware that the so-called Kubo golden formula is not of general validity
Occasionally, ZF spectra in quasi-static magnetic systems are found similar to the Kubo-Toyabe function but with a minimum less pronounced than predicted.

Taking the average of Kubo-Toyabe polarisation functions with Gaussian-distributed field widths,

\[P_{GbG}(t) = \frac{1}{\sqrt{2\pi} \Delta_{GbG}} \int_{-\infty}^{\infty} P_{KT}(\Delta, t) \exp \left(-\frac{(\Delta - \Delta_0)^2}{2\Delta_{GbG}^2} \right) \, d\Delta, \]

provides the required spectral shape. This is the so-called Gaussian-broadened-Gaussian function (Noakes and Kalvius, 1997).

\[P_{GbG}^{\text{GbG}}(t) \text{ as a function of } R \equiv \Delta_{GbG}/\Delta_0, \]

\[\text{with } \Delta_{\text{eff}}^2 \equiv \Delta_0^2 + \Delta_{GbG}^2. \]
Presence of short-range correlations in the field distribution

Zero-field case (2)

- Monte Carlo simulations suggest the presence of short-range correlations to be responsible for the weak dip (Noakes, 1999)
- The spectral shape close to the Kubo-Toyabe lineshape suggests the field distribution to be close to a Gaussian
- Therefore, \(D_c(B_Z) \propto \exp \left(\frac{-B_Z^2}{2\Delta^2} \right) \rightarrow D_c(B_Z) \propto \exp \left[-g \left(\frac{B_Z}{\delta} \right) \right] \) with \(g(x) = \frac{1}{2}x^2 + \frac{1}{3}(\eta_3x)^3 + \frac{1}{4}(\eta_4x)^4 \).

Example of \(\text{Yb}_2\text{Ti}_2\text{O}_7 \), a geometrically frustrated magnet with \(T_c \approx 0.25 \text{ K} \).

Fits with the new distribution (full line) and the Kubo-Toyabe function (dotted line)

New distribution compared to Gaussian distribution

\(\rightarrow \) Presence of short-range correlations in the magnetically ordered state (Yaouanc et al., 2013)
Outline

Introduction: Larmor equation and polarisation functions

Static polarisation functions from a field distribution approach
 Transverse-field polarisation function
 Longitudinal-field polarisation function
 Effect of external field

Computation of the field distribution
 Nature of the field at the muon site
 Zero-field polarisation function in magnets
 Uncorrelated moments

Dynamical polarisation functions
 Stochastic approach: the weak and strong collision models
 Quantum approach
 Spin correlation functions

Correlations or not correlations

Stretched exponential function

Summary
The stretched exponential function

The function

\[P_Z(t) = \exp \left[- (\lambda_Z t)^\beta \right], \]

with \(0 < \beta \leq 1\) is often used for the interpretation of \(\mu\)SR data. Sometimes, \(\beta > 1\) is even allowed (compressed exponential function).

It was introduced by Kohlrausch (1854), and can be understood as resulting from a collection of exponential functions \(\exp(-\lambda t)\) with a distribution \(P(s, \beta)\) of relaxation rates,

\[\exp \left[- (\lambda_Z t)^\beta \right] = \int_0^{\infty} P(s, \beta) \exp(-s\lambda_Z t) \, ds, \]

where \(s \equiv \lambda/\lambda_Z\) is a dimensionless relaxation rate.
The stretched exponential function

- It is rarely physically justified except in the case of dilute spin glasses, where \(\beta = 1/2 \) in the extreme motional narrowing limit. Recall
 \[
 P_Z(t) = \exp \left(-\sqrt{\frac{4\gamma^2 \Delta^2}{\mu \nu_c} t} \right).
 \]

- Sometimes a physically sound model approaches very well the stretched exponential function. Example of \(\text{Nd}_2\text{Sn}_2\text{O}_7 \), a geometrically frustrated magnet with \(T_N = 0.91 \) K.

\[\text{Nd}_2\text{Sn}_2\text{O}_7\]

\[\text{zero-field} \quad 2.1 \text{ K}\]

\[\text{Asymmetry: } a_{\text{norm}}(t)\]

\[0, 2, 4, 6\] Time \(t \) (\(\mu \)s)

\[0.25, 0.20, 0.15, 0.10\]

- Full line: stretched exponential with \(\beta = 0.70 \) (3).
- Dotted line: exponential.

\[\rightarrow\] Presence of quasi-static correlations in the paramagnetic phase
(Dalmas de Réotier et al, 2017)

\[A \text{ set of LF spectra fitted to the dynamical Kubo-Toyabe model.}\]
Outline

Introduction: Larmor equation and polarisation functions

Static polarisation functions from a field distribution approach
 Transverse-field polarisation function
 Longitudinal-field polarisation function
 Effect of external field

Computation of the field distribution
 Nature of the field at the muon site
 Zero-field polarisation function in magnets
 Uncorrelated moments

Dynamical polarisation functions
 Stochastic approach: the weak and strong collision models
 Quantum approach
 Spin correlation functions

Correlations or not correlations

Stretched exponential function

Summary
Summary

- Computation of $P_{X,Z}(t)$ in a static B_{loc}, for different field distributions
- Origin and nature of the field at the muon site
- Derivation of the form of the field distribution in selected cases
- Computation of $P_{X,Z}(t)$ when B_{loc} is dynamical
- Effect of spatial correlations
Bibliography

▶ Books

▶ Introductory articles

▶ Relevant review articles
Zero-field polarisation function in magnets

Commensurate magnets: examples

Ferromagnetic transition at $T_C = 74.5 \, \text{K}$.

Powder sample.

Antiferromagnetic transition at $T_N = 57 \, \text{K}$.

Axial magnet, single crystal

μSR cannot directly tell whether a system is a ferro- or an antiferromagnet.
Computation of the field distribution width

Alternative approach, case of nuclear moments (1)

Start from

\[P_X(t) = \frac{1}{2} \text{Tr}\{\rho_{\text{sys}} \sigma^X(t) \} \]

with

\[\sigma^X(t) = \exp \left(i \frac{\mathcal{H}_{\text{tot}}}{\hbar} t \right) \sigma^X \exp \left(-i \frac{\mathcal{H}_{\text{tot}}}{\hbar} t \right), \]

and \(\mathcal{H}_{\text{tot}} = \mathcal{H}_{Z,\mu} + \mathcal{H}_{Z,\text{sys}} + \mathcal{H}_{\text{dip}} \).

The field distribution arises from \(\mathcal{H}_{\text{dip}} \), truncated to (high field and secular approximations)

\[\tilde{\mathcal{H}}_{\text{dip,||}} = \sum_j \frac{\mu_0}{4\pi} \frac{\gamma_\mu \gamma_j \hbar^2}{2r_j^3} (1 - 3 \cos^2 \theta_j) \sigma^Z I^Z_j. \]

\(I_j \): nuclear spin at site \(j \) (distance \(r_j \) and polar angle \(\theta_j \) to the muon).
Computation of the field distribution width

Alternative approach, case of nuclear moments (2)

Expanding $P_X(t)$ up to second order in t, we recover the formula

$$\Delta^2_G = \left(\frac{\mu_0}{4\pi}\right)^2 \sum_j \gamma_j^2 \hbar^2 \frac{J_j(J_j + 1)}{r_j^6} \left(1 - 3 \cos^2 \theta_j\right)^2,$$

already given.

Outlook:

- The method allows the electric field gradient acting on the nuclei to be accounted for in the computation of Δ^2_G.
- The above method is equivalent to the Van Vleck formula (1948)
 $$\Delta^2_G \propto -\frac{1}{2\gamma^2 \mu \hbar^2} \text{Tr}\{[\tilde{H}_{\text{dip},\|}, \sigma^X]^2\},$$
- Similar method for computation of the ZF field width
 $$\Delta^2_G \propto -\frac{1}{2\gamma^2 \mu \hbar^2} \text{Tr}\{[\mathcal{H}_{\text{dip},\perp}, \sigma^Z]^2\}.$$