Muons in superconductors

- What are superconductors
- Measuring magnetic fields
- Extracting key length scales
- Understanding new physics

Pabitra Biswas, ISIS Muon Group
Superconductors

Zero resistance state

Expels magnetic fields

More than just a perfect conductor
Magnetic Penetration

\[B = \frac{1}{e} B_a \]

\[\lambda_L \propto \frac{1}{n_s} \]

\[B = B_a e^{-x/\lambda_L} \]

Can probe this directly using low energy muon implantation at different depths
Two Types of Superconductor

Type I

Type II

-4πM

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H
Vortex lattice measurement

Muons measure a distribution of fields that depends on the penetration depth λ and the coherence length ξ.
How the measurement works

- Compare the field distribution above and below superconducting transition
- Difference is from the vortex lattice field distribution
What data do you get?

Temperature dependence

Field dependence

\[(\text{Ba,K})\text{Fe}_2\text{As}_2\] gives quantitative agreement with electronic band structure.
Applications – I

Determining properties of superconductors

- **Penetration depth** λ
 - Related to critical current
 - Maximum field without vortex penetration (H_{c1})

- **Coherence length** ξ
 - Related to maximum superconducting field (H_{c2})

- **Structure/symmetry of the superconducting energy gap**
 - Gives clues about the interactions driving superconductivity
Applications – II

• Finding trends in families of superconductors
 - Uemura plot
 - Phase diagrams for materials

• Understanding the physics of the vortex lattice
 - Vortex liquid and glass states
 - Pancake vortices

• Time-reversal symmetry breaking
 - Measure in zero applied field compensating any external fields
 - Tiny magnetic signal emerges
 - Very hard to measure otherwise
Practicalities

- Measure a sample in 1-2 days
- Field range: 0-60mT (ISIS), <9.5T (PSI)
- Temperature range: Above 0.02K
- Powders or crystals, 20mg < m < 3g