Muons in superconductors

• Lesson I – the land we are exploring
 – Introduction: superconductivity, a story of three length-scales
 – London equations and the penetration depth
 – Ginzburg Landau equations and the coherence length
• Lesson II – the workhorse of μSR
 – The Abrikosov flux lattice
 – Muon determination of the penetration depth
 – Conventional and unconventional superconductivity: a glance
 – BCS: the gap and its temperature dependence
• Lesson III – material science
 – Clean vs. dirty superconductors
 – A phase diagram for superconducting materials
 – Towards atomic scale coherence: nanoscopic coexistence
 – Triplet superconductivity, topological superconductivity (?)
Muons in superconductors

• Lesson I – the land we are exploring
 – Introduction: superconductivity, a story of three length-scales
 – London equations and the penetration depth
 – Ginzburg Landau equations and the coherence length

• Lesson II – the workhorse of μSR
 – The Abrikosov flux lattice
 – Muon determination of the penetration depth
 – Conventional and unconventional superconductivity: a glance
 – BCS: the gap and its temperature dependence

• Lesson III – the hotter topics
 – Clean vs. dirty superconductors, extreme type II
 – A phase diagram for superconducting materials
 – Towards atomic scale coherence: nanoscopic coexistence
 – Triplet superconductivity, topological superconductivity (?)
Introduction: Superconductivity

1911 Heike Kamerlingh Onnes

19/08/2019
Advanced School on Muon Spectroscopy

DEPARTMENT OF MATHEMATICAL, PHYSICAL & COMPUTER SCIENCES, PARMA
Elemental superconductors

<table>
<thead>
<tr>
<th>Atomic Number</th>
<th>Symbol</th>
<th>Type I</th>
<th>Type II</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>He</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Li</td>
<td>Be</td>
<td>0.026</td>
</tr>
<tr>
<td>11</td>
<td>Na</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Al</td>
<td>1.175</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Si</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Ar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Sc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Ti</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>V</td>
<td>5.40</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Cr</td>
<td>9.25</td>
<td>0.912</td>
</tr>
<tr>
<td>25</td>
<td>Mn</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Co</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Ni</td>
<td>0.113</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Cu</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Zn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Ga</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Ge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>As</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Se</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Rb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Sr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Y</td>
<td></td>
<td>0.61</td>
</tr>
<tr>
<td>40</td>
<td>Zr</td>
<td>9.25</td>
<td>0.912</td>
</tr>
<tr>
<td>41</td>
<td>Nb</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Mo</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Tc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Ru</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Rh</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Pd</td>
<td>1.70</td>
<td>3.4</td>
</tr>
<tr>
<td>47</td>
<td>Ag</td>
<td>0.517</td>
<td>3.72</td>
</tr>
<tr>
<td>48</td>
<td>Cd</td>
<td>4.47</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>In</td>
<td>3.4</td>
<td>3.72</td>
</tr>
<tr>
<td>50</td>
<td>Sn</td>
<td>4.47</td>
<td>3.72</td>
</tr>
<tr>
<td>51</td>
<td>Sb</td>
<td>4.47</td>
<td>3.72</td>
</tr>
<tr>
<td>52</td>
<td>Te</td>
<td>4.47</td>
<td>3.72</td>
</tr>
<tr>
<td>53</td>
<td>I</td>
<td>4.47</td>
<td>3.72</td>
</tr>
<tr>
<td>54</td>
<td>Xe</td>
<td>4.47</td>
<td>3.72</td>
</tr>
<tr>
<td>55</td>
<td>Cs</td>
<td>4.9</td>
<td>0.128</td>
</tr>
<tr>
<td>56</td>
<td>Ba</td>
<td>4.47</td>
<td>0.154</td>
</tr>
<tr>
<td>57</td>
<td>La</td>
<td>4.47</td>
<td>0.154</td>
</tr>
<tr>
<td>58</td>
<td>Ce</td>
<td>4.47</td>
<td>0.154</td>
</tr>
<tr>
<td>59</td>
<td>Pr</td>
<td>4.47</td>
<td>0.154</td>
</tr>
<tr>
<td>60</td>
<td>Nd</td>
<td>4.47</td>
<td>0.154</td>
</tr>
<tr>
<td>61</td>
<td>Pm</td>
<td>4.47</td>
<td>0.154</td>
</tr>
<tr>
<td>62</td>
<td>Sm</td>
<td>4.47</td>
<td>0.154</td>
</tr>
<tr>
<td>63</td>
<td>Eu</td>
<td>4.47</td>
<td>0.154</td>
</tr>
<tr>
<td>64</td>
<td>Gd</td>
<td>4.47</td>
<td>0.154</td>
</tr>
<tr>
<td>65</td>
<td>Tb</td>
<td>1.083</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Dy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Ho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Er</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Tm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Yb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Lu</td>
<td>0.100</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Hf</td>
<td>4.47</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Ta</td>
<td>4.47</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>W</td>
<td>4.47</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Re</td>
<td>4.47</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Os</td>
<td>4.47</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Ir</td>
<td>4.47</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Pt</td>
<td>4.47</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Au</td>
<td>4.47</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Hg</td>
<td>4.47</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Tl</td>
<td>4.47</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Pb</td>
<td>4.47</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Bi</td>
<td>4.47</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Po</td>
<td>4.47</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>At</td>
<td>4.47</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Rn</td>
<td>4.47</td>
<td></td>
</tr>
</tbody>
</table>

Lanthanide Series
- 58 Ce
- 59 Pr
- 60 Nd
- 61 Pm
- 62 Sm
- 63 Eu
- 64 Gd
- 65 Tb
- 66 Dy
- 67 Ho
- 68 Er
- 69 Tm
- 70 Yb
- 71 Lu

Actinide Series
- 90 Th
- 91 Pa
- 92 U
- 93 Np
- 94 Pu
- 95 Am
- 96 Cm
- 97 Bk
- 98 Cf
- 99 Es
- 100 Fm
- 101 Md
- 102 No
- 103 Lr
Elemental superconductors

Different sources: different shades of optimism

http://www.superconductors.org>Type1.htm
Why superconductors?

10 T conventional solenoid:
5 000 A in 1600 turns
5 MW homes in Abingdon

CERN
LHC
1232 main dipole
392 quadrupole
6000 corrector magnets

30 l liquid He/month
Why superconductors?

ITER tokamak

MRI
Why superconductors?

Quantum computation: transmons

\[|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \]
Why superconductors?

A rare example of macroscopic quantum coherent state (with superfluids) $|\psi\rangle$

Also metals are an example of macroscopic quantum coherent state. $|\mathbf{k}\rangle$

However

\[\rho = \frac{m}{ne^2\tau} \]
\[\tau \approx 10^{-15} \text{ s} \]

\[\rho = 0 \]
\[\tau^* \approx 10^{17} \text{ s} \]

*decays in 10^{10} years (not the same as Drude τ!)}
Why superconductors
Persistent currents – 1
Perfect diamagnet

Shielding in three steps: 1 → 2 → 3

1 - No field
\[\Phi_B, \Gamma = 0 \]
\[T > T_c \]

2 - Zero Field cooling
\[\Phi_B, \Gamma = 0 \]
\[T < T_c \]

3 - Turn field on
\[I_{\text{ext}} \]
\[\Phi_B, \Gamma = 0 \]
\[T < T_c \]

screening eddy-currents to keep

This happen also in a superconductor
\[\rho = 0 \]
Persistent currents – 2
Perfect diamagnet

Establishing a persistent currents in three steps: 1 → 2 → 3

1 – Turn field on above T_c

$\Phi_{B,\Gamma} \neq 0$

$T > T_c$

2 – Field cooling

$\Phi_{B,\Gamma} \neq 0$

$T < T_c$

This does not happen in a superconductor

3 – Turn field off

$\frac{d\Phi_B}{dt} = 0$

$T < T_c$

$\Phi_{B,\Gamma} \neq 0$

In a perfect conductor $\rho = 0$
Meissner-Ochsenfeld effect: $1 \rightarrow 2$

1 - Set field above T_c
\[
\Phi_{B,\Gamma} \neq 0
\]

2 - Field cooling
\[
\Phi_{B,\Gamma} = 0
\]

The flux is expelled, so the real rule is

This would \textbf{not} happen to a perfect conductor

Summary
A superconductor in an external field \mathbf{B}, both F cooling and ZF cooling, expels the flux $\Phi_{B,\Gamma}$.
Field Cooling vs Zero Field Cooling

Negative M/H for ZFC is also the response of a perfect conductor

Negative M/H in FC is the signature of superconductivity

Extrinsic difference due to flux pinning

Zhao et al. PNAS 116 12156
Type I and Type II superconductors

Critical field: superconductivity disappears for $H > H_c$

Type I:

$\chi = \left. \frac{dM}{dH} \right|_{H=0} = -1$

Type II:

$|\chi| = \left. \frac{dM}{dH} \right|_{H=0} \ll 1$

Jing Guo et al. PNAS 114, 13144

$(\text{TaNb})_{0.67} (\text{HfZrTi})_{0.33}$
Type I and Type II

What inhomogeneity for $H > H_{c1}$?

(super)current vortices encircling quantized magnetic flux $\Phi_0 = \frac{h}{2e}$

Vortices in YBCO imaged by scanning SQUID microscopy
Three length-scales

• London penetration depth
 – λ controls the magnetic field penetration

• Coherence length
 – ξ controls the quantum coherence of the ground state

• Mean free path
 – ℓ controls scattering
London equation

Sketch of deep argument on electron wavefunction:

- incoherent in normal Drude metal: \(\mathbf{J} = n q \mathbf{v} \)

No power supply

\[
\langle p \rangle = 0 \quad \rightarrow \quad m \langle v \rangle = 0 \quad \rightarrow \quad \langle J \rangle = 0
\]

- quantum coherent in superconductors

Superconducting state: \(\langle p \rangle = 0 \) even after switching fields on.

Minimal substitution: \(m \mathbf{v} = \mathbf{p} - e \mathbf{A} \)

\[
\langle v \rangle = -\frac{e}{m} \mathbf{A} \quad \rightarrow \quad \mathbf{J}_s = -\frac{n e^2}{m} \mathbf{A}
\]

London equation

Fritz London, 1900-1956
London penetration depth

\[J_s = -\frac{ne^2}{m} A \]

London equation

Substituting in Ampère law one obtains

\[\nabla^2 B = \frac{\mu_0 ne^2}{m} B \]

For London

- electron mass
- electron density
- electron charge

\[\lambda = \left(\frac{m}{\mu_0 ne^2} \right)^{\frac{1}{2}} \]

London penetration depth

After Cooper pairs

Also

\[\nabla^2 A = \frac{\mu_0 ne^2}{m} A \]
London penetration depth derivation

\[J_s = -\frac{ne^2}{m} A \]

London equation

take the curl of the stationary Ampère law \(\nabla \times \mathbf{B} = \mu_0 \mathbf{J} \)

Vector identity
\[
\nabla \times \nabla \times \mathbf{B} = \nabla (\nabla \cdot \mathbf{B}) - \nabla^2 \mathbf{B} = \mu_0 \left(-\frac{ne^2}{m} \nabla \times A\right)
\]

By Gauss law \(\nabla \cdot \mathbf{B} = 0 \)

\[
\lambda = \left(\frac{m}{\mu_0 ne^2}\right)^{\frac{1}{2}}
\]

\[
\nabla^2 \mathbf{B} = \frac{1}{\lambda^2} \mathbf{B}
\]

Magnetic field (London approximation)
What does λ imply?

Ampere law

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j}$$

Guess the solution

$$\mathbf{B} = B_0 e^{-y/\lambda} \hat{z}$$

Right!

$$\nabla \times \mathbf{B} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \partial_x & \partial_y & \partial_z \\ 0 & 0 & B_0 e^{-y/\lambda} \end{vmatrix} = -\frac{B_0}{\lambda} e^{-y/\lambda} \hat{x}$$

Thin sample

$$\mathbf{B}(x, y, z) = \mu_0 k_0 \frac{\cosh(y/\lambda)}{\cosh(d/\lambda)} \hat{z}$$
Exercise: do it properly

Check that

\[
B = \mu_0 k_0 \hat{\hat{z}} \begin{cases}
1 & y < 0 \\
\frac{e^{-y/\lambda}}{\lambda} & y > 0
\end{cases}
\]

and

\[
A = -\mu_0 k_0 \hat{\hat{x}} \begin{cases}
y & y < 0 \\
\lambda e^{-y/\lambda} & y > 0
\end{cases}
\]

are solutions of

\[
\nabla^2 B = \frac{1}{\lambda^2} B
\]

and

\[
\nabla^2 A = \frac{1}{\lambda^2} A
\]

with

\[
J_s = -\frac{ne^2}{m} A
\]
Anisotropic metals

\[\lambda^2 = \frac{m}{\mu_0 ne^2} \rightarrow \begin{bmatrix} m_a & 0 & 0 \\ 0 & m_b & 0 \\ 0 & 0 & m_c \end{bmatrix} \frac{1}{\mu_0 ne^2} \]

\[\lambda_a^2 = \frac{m_a}{\mu_0 ne^2} \]

\[\lambda_b^2 = \frac{m_b}{\mu_0 ne^2} \]
LEM experiment

Kiefl et al. Phys. Rev. B. 81 180502

![Graph showing the relationship between energy (keV) and average local field (mT)]

- The graph illustrates the average local field (mT) as a function of energy (keV).
- It demonstrates two distinct orientations: $\vec{j} \parallel a$-axis and $\vec{j} \parallel b$-axis.
- The data points are plotted against energy, with the applied field marked.
- The graph features two lines, one for each orientation, showing the mean depth (nm) on the y-axis and energy (keV) on the x-axis.
Landau model

The order parameter is a complex function ψ and the free energy density is

$$f_s(H) = f_n(H) + a(T - T_c)|\psi|^2 + \frac{b}{2} |\psi|^4 + \frac{\mu_0}{2} HM$$

For $a, b > 0$ (only below T_c and below B_c)

Condensation energy \equiv maximum energy that supercurrents can expell, corresponds to a tiny free energy density

$$f_n(H_c) - f_s(H_c) = \frac{\mu_0}{2} H_c^2 = \frac{1}{2\mu_0} B_c^2$$

Compare

$$v_{cell} \frac{B_c^2}{2\mu_0} \approx 1 \mu eV$$

$$\epsilon_F \approx 1 eV$$
Ginzburg-Landau coherence length

In zero B field, linearised ($b = 0$)

$$f_s(0) = f_n(0) + a(T - T_c)|\psi|^2 + \frac{\hbar^2}{2m} |\nabla \psi|^2$$

Ginzburg-Landau free energy density

The ratio of the order parameter to the gradient term is a square lengthscale

$$\left[\frac{|\psi|^2}{|\nabla \psi|^2} \right] = \frac{\hbar^2}{2ma|T - T_c|} = \xi^2$$

energy loss

$\propto B_c^2 \xi$

condensation energy

energy gain

$\propto B_c^2 \lambda$

(shielding)
Type-I vs Type-II again

It is convenient to have normal-superconductor interfaces. The energy gain is

\[\propto B_c^2 \lambda \]

(shielding)

Homogeneous superconductor interfaces cost energy

\[\kappa = \frac{\lambda}{\xi} \]

\[\kappa < \frac{1}{\sqrt{2}} \]

Type I:

\[H_c \]

Type II:

\[H_{c1} < H < H_c \]

Meissner

inhomogeneous

energy gain

\[\propto B_c^2 \xi \]

energy loss

\[\propto B_c^2 \xi \]

condensation energy
GL equations

Minimizing the free energy with respect to $\nabla \psi$

$$f = a(T - T_c)|\psi|^2 + \frac{1}{2m^*} \left| \frac{\hbar}{i} \nabla \psi \right|^2$$

GL (linearised) equation

$$-\frac{\hbar^2}{2m^*} \psi = a(T_c - T)\psi$$: like a Schrödinger equation

In a magnetic field

Minimizing the free energy with respect to $\nabla \psi$, A

$$f = a(T - T_c)|\psi|^2 + \frac{1}{2m^*} \left| \left(\frac{\hbar}{i} \nabla + 2eA \right) \psi \right|^2 + \frac{1}{2\mu_0} |\nabla \times A|^2$$

Two GL (linearised) equation

$$\left[-\frac{\hbar^2}{2m^*} \left(\nabla + \frac{e^*}{\hbar} A \right)^2 + a(T - T_c) \right] \psi = 0$$

$$J_s = -\frac{ne^2}{m} A$$

$$J = -\frac{e^* \hbar}{i2m^*} (\psi^* \nabla \psi - \psi \nabla \psi^*) - \frac{(e^*)^2}{m^*} |\psi|^2 A$$

cfr. London
Single London vortex

It is convenient to have normal-superconductor interfaces when

\[\kappa = \frac{\lambda}{\xi} > \frac{1}{\sqrt{2}} \]

May be convenient to have field defects

\[\nabla^2 B - \frac{1}{\lambda^2} B = \Phi_0 \delta(r) \]

Field must be quantized!

1 fluxon \[\int_A B \cdot da = \Phi_0 = \frac{\hbar}{2e} = 2.0678 \cdot 10^{-15} \text{ Wb} \]
Next lecture: type II

what does an implanted muon detect?

From a single vortex to a flux lattice to the normal state