

Final Thoughts!

2) Writing beamtime applications

- 2 calls per year (deadlines 16th April and 16 October).
- All submissions now via Web.
- 6 weeks after the deadline, the selection panel meets.
- Results a few weeks after that (with comments).
- Instrument scientist will then ask for preferred dates.
- Schedule produced, local contacts assigned.

Panel Member	Affiliation	
Prof A Harrison (Chair)	University of Edinburgh,	
	UK	
Dr K Chow	University of Alberta,	
	Canada	
Prof J Davies	University of Bath, UK	
Prof G Gehring	University of Sheffield, UK	
Dr T Matsuzaki	RIKEN Institute, Japan	
Prof P Mendels	Universite Paris-Sud,	
	France	
Dr E Morenzoni	PSI, Switzerland	
Dr J Stride	ILL, France	
Dr S Cottrell (Secretary)	ISIS, RAL, UK	
Dr P King (ISIS	ISIS, RAL, UK	
Representative)		

Part 1: Administrative details Entry of administrative details for the proposal. All input boxes that must be completed are in **bold** and marked with

CCLRC

Back to Experimental Team Menu

Continue to Experiment Details

ISIS	The ISIS Online Proposal System			
			Welcome	e Philip King
Step 5b of 10: Sample	Environment			
Standard ISIS SE equip	ment (choose multiple i applicable - Ctrl+Click)	f Don't Know * Helium Cryostat CCR T < 1K cryostat T < 0.3K cryostat		
Temperatur	re range (including units)	to		
Pressur	re range (including units)	to 📃		
Magnetic field s	strength (including units)	: to		
Details of any specialist ec	quipment or user supplie	d		
	equipment	:		
Please note: Special equi in advance with Ian	pment must be discusse Bailey, I E Bailey@rl ac u	d 4		
	balley, <u>na spalley with actu</u>	<u>IN</u>		
Back to Sample	Continue to Sample Safety			
	,			

MuSR

Longitudinal fields up to 2500G Transverse fields up to around 600G Dilution fridge (25mK - 300K) Sorption cryostat (350mK - 50K) ⁴He cryostat (1.3K - 300K) CCR (10K - 380K) Flow cryostats (4K - 600K) Furnace (300K - 1000K)

EMU

Longitudinal fields up to 4500G Transverse fields up to 100G *Sorption cryostat (350mK - 50K) *⁴He cryostat (2.0K - 300K) *CCR (4K - 380K) *Flow cryostats (4K - 400K) Furnace (300K - 1000K+) *'Fly-past' mode for small samples

DEVA

Mainly for RF / longer-term experiments. Flow cryostat (4K - 600K)

If you find, before your experiment, that you may need a different piece of SE equipment, you should get in touch with your local contact straight away. If you ask for a SE equipment change when you arrive, it probably won't be possible!

Part 2: Science Case

Upload a document outlining the scientific case. This must be written in **English** and fully contained within **2** pages, since no other material will be transmitted to the scheduling panels.

The document must be in **Black and White** and please ensure that the font is of a reasonable size so that it remains legible when photocopied and reduced by 70%.

The document must be in PDF format. Should you not be able to convert your document to PDF our on-line conversion facility can be found at

p://www.isis.rl.ac.uk/PDFconverter/

The document should be less than 2 MByte in size.

It would be a good idea to prepare the scientific case/experiment description document before you start with the online submission.

The Science Case

• Proposals should be self-contained, but do include references to your own previous work and the general literature where relevant.

• Explain the background to your proposal, and any technological relevance of the material, timeliness.

• Describe the problem you would like to solve and the information you would like to get.

• Explain how muons can help. If relevant, give examples from the literature of how muons have been useful in the past for similar problems.

The Science Case

•Describe the measurements you would like to make (e.g. no. of samples, temperature scans, field scans, etc.).

- Justify the number of days beamtime you have asked for.
- Say something about how you will analyse your data (e.g. if there is a particular model you will use).
- Say something about your samples are they available now? If not, how will they be made? How will they have been characterised before your muon experiment?
- If you have had a previous experiment on a related material or topic, make sure you have written an experimental report.

'we will search for the multi-spitoon excitations'

'CsNiBr₃ is isomorphic to CsNiBr₃ [2]'

'we will probe the two mango dispersion'

'the burst of muons, rather than one muon at a time, will simulate hydrogen diffusion and encourage competition for traps \ldots .'

'In the past, several of these systems have been studied by means of muSR. Reanalysing the data shows that substantial parts of the data are missing'

'I am overwhelmed by the feeling that I have spent longer reading this proposal than the author spent writing it'

10th International Conference on Muon Spin Rotation, Relaxation and Resonance

Scope: all aspects of the theory, practice and applications of muon spectroscopy in molecular, condensed matter and materials science.

Topics: to include muon studies in magnetism, superconductivity, organics, semiconductors, chemistry and charge transport, as well as muon technique and facility developments.

Deadlines: abstracts and reduced rate registration: 1st May 2005. Final registration deadline: 15th June 2005.

8th - 12th August 2005, Oxford, UK http://musr05.physics.ox.ac.uk

RADADAN

THE END!

We hope the course has been useful (please let us know on your questionnaires!)

I SI S muon instruments scientists are always available to answer questions, help with proposals, etc.

We look forward to seeing you at the facility in the future!

