

Muons and Ionic Conduction

J.S. Lord ISIS

Introduction

٠

٠

Atoms and ions can often diffuse through solids

Some materials have disordered, mobile ions in an otherwise regular lattice - 'fast ion conductor'

Many useful applications:

batteries

fuel cells

sensors

catalysts

• H⁺ readily diffuses into, through and out of many materials

Presence of H affects properties

- · Muons behave as light isotope of hydrogen and diffuse too
- \cdot Other ions diffuse, eg. Li^+ and Ag^+
- · Static muons can observe the motion of other ions
- · Muons may attach to molecular ions which are in motion
- · Electron motion can also be studied

The Muon as a Proton

- Positive muon has same charge as proton chemically the same
- · Lower mass, so higher ground state energy when in a potential well and higher attempt rate at barrier

Usually results in faster diffusion

- · Sometimes higher energy in intermediate state, giving lower tunnelling rate through barrier for μ compared to H or D
- Diffusion can start at <50K (AI, Cu and other metals) or the muon may remain static up to >500K (Boron)
- · In metals the positive charge is screened by conduction electrons
- · Some lattice distortion expected around an interstitial particle

Motional Narrowing

- The muon spin interacts with nearby nuclear (or electronic) moments
- Relaxation in zero field P(t)= $G_z(t)$ or transverse field P(t)= $G_x(t) \cos(\omega t)$
- May be enhanced by the presence of an electron (muonium)
- Static relaxation quadratic in form close to t=0, ie. $G(t) = 1 \sigma^2 t^2 + ...$
- Motion takes the muon away from the near neighbours to a new equivalent site where relaxation re-starts as if from t=0

Motional Narrowing

For fast motion the relaxation is Lorentzian in form with relaxation rate inversely proportional to hop rate

for each hop interval τ , polarisation reduced by factor $(1-\sigma^2\tau^2)$

polarisation after N hops = $(1-\sigma^2\tau^2)^N = (1-\sigma^2\tau^2)^{t/\tau} \approx \exp(-\sigma^2\tau t)$

- · Hopping actually at random times with average rate $1/\tau$
- For slow motion the relaxation may be enhanced, eg. the '1/3 tail' shows relaxation
- · Full solution for zero field: Dynamic Kubo-Toyabe function

Thermally Activated Diffusion

- Distortion of the lattice around the muon generates a potential well Self Trapped when in ground state
- If thermal vibrations of the lattice make a neighbouring site have the same energy Muon can then tunnel between the two sites
- If the muon is excited into a higher energy level Can cross the barrier
- Overall effect: diffusion hop rate follows Arrhenius law $v = v_0 \exp(-E_a/kT)$

Restricted Motion

- The muon may be able to move between nearby sites but not escape the unit cell:
 - Several interstitial sites within one cage
 - Large amplitude vibration around the equilibrium site (shallow energy minimum)

Rotation of molecular ion eg. OMu⁻, NH ₃Mu⁺ or MuSO₄⁻

• For fast motion:

For fixed nuclear spins, average the local field over all possible muon sites

- Sum over all possible nuclear spin configurations
- New field distribution lower than for static muon, but not zero
- · Long range diffusion usually follows at higher temperature

Trapping

- · All real materials contain impurity atoms, crystal lattice defects, grain boundaries and surfaces
- · Likely to have some lower energy sites for interstitial atoms such as μ^+
- At low temperatures the muons remain at their implantation sites and do not find the traps
- Higher temperature causes the muons to diffuse through the lattice and they may trap at these sites
- Static muon signal observed, with linewidth different to lattice site and dependent on local environment
 - change dopant ions and observe differences
- Further increase in temperature allows the muon to escape the trap

Quantum Diffusion

- In pure crystalline materials at very low temperature, the interstitial sites form a 'conduction band'
- · Muons (or muonium) can travel freely through the lattice
- Thermally excited vibrations (phonons) disrupt the regular lattice and scatter the muons
- · Muons now 'self trapped' at one site until thermally excited motion begins

Modelling Proton Conduction

- · Protons/muons in ReO_3 one of a family of proton conductors HWO_3 , HMoO_3
- · Simple cubic structure, related to the perovskites

Monitoring ionic conduction - Lithium

- Li_xMn_yO₄ battery materials ñ spinel structure
- · Muon is static (bound to oxygen)
- · Li⁺ ions start to diffuse at 250 K
- Li contribution to linewidth is motionally narrowed while contribution of other lattice nuclei remains (eg. Mn)
- · Linewidth reduces to that due to static nuclei only
- Further linewidth decrease would be expected as muons start to diffuse (above 350K)

Field distribution width △ (mT)

Electronic conduction

- We can also use the muon to measure electron mobility in insulators and semiconductors
- The muon may initially come to rest as Mu+ (associated with some electron cloud but with net positive charge

May attach to a host atom or ion but retains net positive charge

- Electrons are formed by ionisation as the muon enters the material at 4MeV
 These may be attracted to the muon to form muonium
- Apply electric fields to sweep the electrons away from the muon

Increased fraction remaining as Mu⁺ Reduced muonium fraction

Asymmetry between E parallel and anti-parallel to muon path (electrons may be swept towards muon)

Conducting Polymers

• Muon both generates a polaron and probes its motion, e.g. for PPV:

Diffusion and the Risch-Kehr Model

For 1-d diffusion a particle starting at x=0 will return from time to time, though with lower probability at later times. (Return much less likely in 3D)

Stochastic model describing muon relaxation due to intermittent hyperfine coupling with a diffusing polaron

with the relaxation parameter Γ following a 1/B law at high field:

$$\Gamma = \frac{\omega_0^4}{2\omega_e D_{\parallel}^2}$$

PPV - Field and Temperature Dependence

Interchain Diffusion Rate D_{\perp}

Muons and other techniques

- · Muons measure local conductivity, like NMR
- Many techniques measure bulk conductivity such as AC or DC resistivity Often dominated by surface, grain boundary or trapping effects.
- · Muons implanted into material
 - signal independent of temperature or magnetic field
 - independent of proton solubility
 - very low concentration limit
 - measure proton or ion conductivity even in presence of mobile electrons (metals)
- · Limitations
 - Need nuclear moments in material
 - Paramagnetism causes muon relaxation harder to analyse
 - muon may not be in equilibrium site or charge state