Welcome!

A short Introduction and Overview

Philip King
ISIS Muons
Outline

A bit about ISIS
- how ISIS works

Muons at ISIS
- history, usage

Overview of the Training Course
ISIS

- 28 Neutron and muon instruments (soon to be 35)
- 700 Experiments per year
- 3000 Instrument-days per year
- 500 Publications per year
- 2000-strong user base
- 360 staff
- £2-3M electricity bill
Science at ISIS

- Archeometry
- Bio-molecular Science
- Earth / Planetary Science
- Engineering
- Hydrogen Storage
- Surfaces & Interfaces
- Superconductivity / Magnetism
- Environmental Science
The ISIS Pulsed Neutron and Muon Source

A World Centre for Condensed Matter Science with Neutrons and Muons
The ISIS Accelerators

- Ion source
- Linear accelerator
- Synchrotron accelerator
- Extracted proton beam (to targets)
- 800 MeV proton beam
- 800 MeV synchrotron
- 70 MeV H⁻ Linac
- HEP Test Beam

Science & Technology Facilities Council
The ISIS Accelerators

The beginning - the Ion Source

Produces H⁻ ions and accelerates them to 665 keV.
The ISIS Accelerators

The middle - the Linear Accelerator

Accelerates the H⁻ ions to 70 MeV.
The ISIS Accelerators

The final stage - the Synchrotron Accelerator

H⁻ ions stripped to protons
Protons travel ~10,000 times round
Accelerated to 800 MeV (84% light speed)
The ISIS Targets

The Neutron Target

Tantalum target
Neutrons produced by ‘spallation’
Heat dissipation is 160 kW
The ISIS Targets

The **Muon Target**

Carbon target, 10 mm thick
Takes 2-3% of the proton beam
The Second Target Station Project

- £150M project
- Designed to meet future scientific needs in the key areas of:
 - Soft Matter
 - Advanced Materials
 - Bio-molecular Science
- First proton beam to target area: Dec 2007
- First measured neutrons: Spring 2008
- Start of experimental programme: Oct 2008
The ISIS Pulsed Neutron and Muon Source

• ISIS runs ~180 days per year
• It runs in ‘cycles’ of 30-40 days each
• ISIS is controlled from the Main Control Room - which is always staffed
Muons at ISIS
A Brief History of EC ISIS Muons

1985: Construction - EC, UK, Italy, France, Germany, Sweden

1987: First muons - single beamline (MuSR)

1991: Construction of beamline upgrade - EC-funded

1993: 3 beamlines operational (MuSR, EMU, DEVA)

1996 - 2008: €3.9M in EC Access funding

1998-2000: DEVA RF-spectrometer built (EPSRC)

2005-2009: HiFi constructed (£2.1M)

2007: 20th birthday!
Usage of EC ISIS Muons

The last 3 ISIS proposal rounds (June 2006 - December 2007):

Applications from

19 different countries (UK + 11 European + 7 outside Europe)
67 separate research groups have made applications
738 days applied for: 417 available (1.8 oversubscription)
~35% of applicants are regular neutron users
Average of 50 publications per year over the past 8 years

Usage of EC ISIS Muons

Chemistry and molecular studies

Hydrogen studies
- Other H studies
 - H in other semiconductors
 - H in II-VIs and oxides
- Light particle diffusion
- Polymer charge transport
- Ion/proton transport

Charge transport and diffusion

Inorganic magnetism and superconductivity
- Organic magnetism and supercond.
- Inorg. magnetism
- Inorg. supercond.
- Spintronics

Organic magnetism and superconductivity
<table>
<thead>
<tr>
<th>Time</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30</td>
<td>Start</td>
<td>Practical Session R55</td>
<td>Practical Session R55</td>
<td>Practical Session R55</td>
<td>Practical Session R55</td>
</tr>
<tr>
<td>8:45</td>
<td>Welcome + Overview</td>
<td>Analysis of data obtained overnight</td>
</tr>
<tr>
<td>9:00</td>
<td>Writing Beam Appl.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:15</td>
<td>Philip King</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:30</td>
<td>Introduction to μSR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:45</td>
<td>Steve Blundell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td>Coffee</td>
<td>Coffee</td>
<td>Coffee</td>
<td>Coffee</td>
<td>Coffee</td>
</tr>
<tr>
<td>10:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>μSR Beamlines</td>
<td>Data Analysis</td>
<td>Applications 2</td>
<td>Applications 3</td>
<td>PSI and Slow Muons</td>
</tr>
<tr>
<td>11:15</td>
<td>James Lord</td>
<td>Workshop</td>
<td>Superconductors</td>
<td>Semiconductors</td>
<td>Thomas Proksche</td>
</tr>
<tr>
<td>11:30</td>
<td></td>
<td>Francis Pratt</td>
<td>Robert Cywinski</td>
<td>Steve Cox</td>
<td></td>
</tr>
<tr>
<td>11:45</td>
<td>μSR Spectrometers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>Sean Giblin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:15</td>
<td>RF-μSR and</td>
<td>Neutrons and Muons</td>
<td>Applications 4</td>
<td>Development of HiF</td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>Pulsed Environments</td>
<td>Sue Kilcoyne</td>
<td>Molecular materials</td>
<td>Zahir Salmon</td>
<td></td>
</tr>
<tr>
<td>12:45</td>
<td>James Lord</td>
<td></td>
<td>Iain McKenzie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30</td>
<td>LUNCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:45</td>
<td>RAL Restaurant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>Data Analysis</td>
<td>Practical Session R55</td>
<td>Practical Session R55</td>
<td>Practical Session R55</td>
<td>NMR and μSR</td>
</tr>
<tr>
<td>14:15</td>
<td>Francis Pratt</td>
<td></td>
<td></td>
<td></td>
<td>Petro Carrete</td>
</tr>
<tr>
<td>14:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>Safety at ISIS</td>
<td></td>
<td></td>
<td></td>
<td>Presentations</td>
</tr>
<tr>
<td>15:15</td>
<td>Matt Dickson</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td>Coffee</td>
<td>Coffee</td>
<td>Coffee</td>
<td>Coffee</td>
<td></td>
</tr>
<tr>
<td>16:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:30</td>
<td>Photo R55</td>
<td>Practical Session R55</td>
<td>Practical Session R55</td>
<td>Practical Session R55</td>
<td></td>
</tr>
<tr>
<td>16:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:00</td>
<td>Tour of R55</td>
<td></td>
<td></td>
<td></td>
<td>Coffee</td>
</tr>
<tr>
<td>17:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:30</td>
<td></td>
<td></td>
<td></td>
<td>End</td>
<td></td>
</tr>
<tr>
<td>17:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:15</td>
<td>Social Evening and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:30</td>
<td>Banquet Dinner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:45</td>
<td>R22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:00</td>
<td>Dinner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:15</td>
<td>RAL Restaurant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The lectures take place in the conference room on the first floor of R78.
Experiment Timetable

<table>
<thead>
<tr>
<th>Beamline</th>
<th>Tuesday 22/04/2008</th>
<th>Wednesday 23/04/2008</th>
<th>Thursday 24/04/2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argus</td>
<td>Martin Kreigisch</td>
<td>Mariusz Czapla</td>
<td>Neil Creamer</td>
</tr>
<tr>
<td></td>
<td>Jose Louis Plaza</td>
<td>Nicolas De Crom</td>
<td>Kevin Ellis</td>
</tr>
<tr>
<td></td>
<td>Kefei Zheng</td>
<td>Lisa Simmons</td>
<td>Adrian Ferdinand</td>
</tr>
<tr>
<td></td>
<td>Andrej Zorko</td>
<td>Andrew Steele</td>
<td>Patrizia Tedesco</td>
</tr>
<tr>
<td>CdS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMu</td>
<td>Eran Amit</td>
<td>Valdemar Fernandes</td>
<td>Francesca Branzoli</td>
</tr>
<tr>
<td></td>
<td>Neil Creamer</td>
<td>Jeffrey Klatsky</td>
<td>Mariusz Czapla</td>
</tr>
<tr>
<td></td>
<td>Valdemar Fernandes</td>
<td>Andrew Powell</td>
<td>Jose Louis Plaza</td>
</tr>
<tr>
<td></td>
<td>Martin Mansson</td>
<td>Andrej Zorko</td>
<td>Andrew Steele</td>
</tr>
<tr>
<td>MuSR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Francesca Branzoli</td>
<td>Eran Amit</td>
<td>Martin Kreigisch</td>
</tr>
<tr>
<td></td>
<td>Nicolas De Crom</td>
<td>Kevin Ellis</td>
<td>Martin Mansson</td>
</tr>
<tr>
<td></td>
<td>Jeffrey Klatsky</td>
<td>Adrian Ferdinand</td>
<td>Lisa Simmons</td>
</tr>
<tr>
<td></td>
<td>Andrew Powell</td>
<td>Patrizia Tedesco</td>
<td>Kefei Zheng</td>
</tr>
<tr>
<td>Port 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mariusz Czapla</td>
<td>Francesca Branzoli</td>
<td>Eran Amit</td>
</tr>
<tr>
<td></td>
<td>Kevin Ellis</td>
<td>Neil Creamer</td>
<td>Nicolas De Crom</td>
</tr>
<tr>
<td></td>
<td>Adrian Ferdinand</td>
<td>Martin Kreigisch</td>
<td>Valdemar Fernandes</td>
</tr>
<tr>
<td></td>
<td>Lisa Simmons</td>
<td>Martin Mansson</td>
<td>Jeffrey Klatsky</td>
</tr>
<tr>
<td></td>
<td>Andrew Steele</td>
<td>Jose Louis Plaza</td>
<td>Andrew Powell</td>
</tr>
<tr>
<td></td>
<td>Patrizia Tedesco</td>
<td>Kefei Zheng</td>
<td>Andrej Zorko</td>
</tr>
</tbody>
</table>

AFM = Observation of an antiferromagnetic phase transition.

CdS = Muonium in CdS.

Cu = Muon diffusion in copper.

F-μ-F = Observation of the F-μ-F state in a fluorinated polymer.

High T_c = Measurement of the London penetration depth in a high-T_c superconductor.
Muon People!

Steve Cottrell

Sean Giblin

Francis Pratt

James Lord

Iain McKenzie

Steve Cox

Adrian Hillier

Zaher Salman