Muon Beam Lines

James Lord
ISIS
The Objectives

- Deliver muons to a sample
- Small spot size (match sample size)
- Well defined energy (penetration depth)
- Intense beam
- High polarisation
- Low contamination with other particles (background counts)
Muon Production - physics

- High energy protons colliding with nuclei, to form pions
- Nuclear reactions such as
 - $p^+ + p^+ \rightarrow p^+ + n + \pi^+$
 - $p^+ + n \rightarrow p^+ + p^+ + \pi^-$
- Requires proton energy > 280 MeV
- Full production rate for energy 500-1000 MeV
 - ISIS 800 MeV, PSI 590 MeV
- Also double pion production $p^+ + p^+ \rightarrow p + p + \pi^+ + \pi^-$ etc at higher energy
- Pions then decay to give muons: $\pi^+ \rightarrow \mu^+ + \nu_\mu$ (lifetime 26ns)
 - This decay gives the muon polarisation: 100% polarised opposite to momentum, in the rest frame of the pion
Muon Production - Targets

- Material must have a low atomic number and high melting point
 - High atomic number gives more neutrons by spallation and more scattering of the beam
- Usually Graphite, sometimes Beryllium.
- Beams are in vacuum. ISIS target heated to \(~600^\circ C\), cooling by conduction to the edge and radiation.
- Most protons (> 95%) do not produce pions and pass through with little energy loss, so can be used for other purposes (neutrons).
“Surface” Muons

• Some pions stop within the target material
• Each pion decays to a muon (E=4.1MeV, \(p = 29 \text{MeV}/c \), 100% polarisation parallel to momentum) and a neutrino
• Muons formed close to the target surface can escape
• Some of these muons collected into the beam line
• Polarisation 100% for parallel beam at sample
Beam Line design 1

- The simplest possible beam line

- Main problem – Low muon flux
- Additional problems – other particles transmitted, high radiation level at sample
Beam line design 2 - focusing

- Use a lens to focus the muons and give larger flux

![Diagram with lens focusing]

- Usually use more than one lens:
 - First lens close to source to capture large solid angle
 - Sample close to last lens to give smaller beam spot
- Still transmits many other particles - these are poorly focused if the wrong momentum
- Straight-through path for neutrons (could be blocked, e.g. Dai-Omega)
Practical muon lenses

- Muons deflected in transverse magnetic (or electric) fields
 - Deflection $\theta = d \frac{B q}{p}$ or $\theta = d \frac{E q}{p v}$
- Uniform field bends the whole beam through the same angle
- Field Gradients give deflection varying with position – focusing possible

- Quadrupole magnet
 - Along axis, $B=0$ and no deflection
 - Focusing in x direction (convex lens)
 - Defocusing in y (concave lens)
- Can’t focus both axes simultaneously (but Solenoids can do this)

- Generally use electromagnets
 - Allow tuning of beam by varying current
- Focusing strength depends on momentum
Practical muon lenses

- For focusing on both axes we use a Doublet or Triplet
- Doublet gives different magnification in x and y
- Triplet can preserve image shape
Beam line design 3 - bends

- Include a Bend (uniform field, dipole magnet)
- Excludes uncharged particles (n, γ) and those with wrong charge (π^-, e^-)
- Separates particles with different momentum
 - use Slits at a suitable point to define the momentum range passed
- More quadrupoles and a second bend can make the beam Achromatic
 - particles of any momentum are returned to the same path
 - can open momentum slits for large flux but keep same spot size at sample
- Problem – still passes positrons if they have the same momentum
Beam line design 4 - Separator

- Magnetic beam line selects momentum only
- Need to separate out surface muons ($p=27$ MeV/c and $v = 0.24$ c) from positrons with $p=27$ MeV/c (but $v \approx c$)
 - these arise from muon decay in the target and have the same time structure as the positrons from the sample
- Use a Crossed field separator
- Electrostatic and magnetic forces cancel only for particles of the correct velocity

\[F_{\text{mag}} = B q v \]
\[F_{\text{elec}} = E q \]
Spin Rotation

- For a magnetic bend of field B and path length d
 - Deflection $\theta = \frac{d \, B \, e}{\mu}$
 - Spin precession $\phi = B \gamma t = \frac{d \, B \, \mu \, e}{2\mu}$
 - Exact match for $g=2.0$. Muon $g=2.00233$ so the spin follows the momentum along any simple magnetic beam line.
 - Muon storage rings can measure $(g-2)$ after many turns
- Electrostatic deflection leaves the spin unchanged but rotates the momentum
 - ISIS kicker gives 4° horizontal spin rotation for EMU and HiFi
- A crossed field device rotates the spin without changing the momentum
 - ISIS separator gives 6° rotation (vertical)
- Higher fields and/or longer path length give a “spin rotator” ideally 90°
 - useful for transverse field experiments, muons enter sample along field
 - $\sim 45^\circ$ allows simultaneous measurement of longitudinal and transverse relaxation rates
Beam line design 5 - Pulses

- ISIS produces a double proton pulse, separation 330ns (repeated at 50Hz)
- Muon lifetime $2.2 \mu s$
- Therefore the muon decay spectra overlap
- Transverse precession signals can interfere and cancel
 - Must remove one pulse.

![Graph showing count rate and precession frequency](image)
The Kicker

- First used “UPPSET” electrostatic kicker to throw away one pulse
- Improved design – divert one pulse into a second (and third) instrument – EC electrostatic kicker
- RIKEN uses a magnetic kicker, better for high momentum muons

- Also useful for
 - Slicing pulses for higher frequency response
 - Lower background at continuous sources such as MORE at PSI
Beam line design 6 – Spot Size

- The muon spot is the image of the production target – often too large
- We could use collimators near the sample
- Unwanted muons stop in the collimator and decay as normal
 - These positrons must be stopped from reaching the detectors while not blocking those from the sample. Difficult to achieve in practice
- Solution – Remote collimation
 - Intermediate focus earlier in the beam line
 - Slits at that point reduce the spot size
 - Positrons from the slits cannot reach the detectors
 - Slits imaged onto the sample
Muon Shutters

- Stop beam to change sample
 - Can’t turn off accelerator if other instruments running
- Neutrons need 1m thick steel block
- Surface muon beam stopped by 5cm lead plate lifted by compressed air cylinder

- Interlock system
 - Prevents shutter being opened unless area is searched and locked.
 - Stops beam if any problem eg. “Beam Off” button
 - In addition the interlocks may control some of the beam line magnets.

Continuous and Pulsed beams

<table>
<thead>
<tr>
<th></th>
<th>Continuous (eg. PSI)</th>
<th>Pulsed (eg. ISIS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam structure</td>
<td>DC, or $<< \tau_\mu$</td>
<td>Pulse $<< \tau_\mu$, Spacing $>> \tau_\mu$</td>
</tr>
<tr>
<td>Counting</td>
<td>Each muon counted in and positron counted out</td>
<td>Average start signal from accelerator, just count positrons</td>
</tr>
<tr>
<td>Rate limit</td>
<td>When 2 muons in sample</td>
<td>Count rate per detector element close to $t=0$</td>
</tr>
<tr>
<td>Integral counts</td>
<td>Can remove muon counter for high rate</td>
<td>Time dependent polarisation always available</td>
</tr>
<tr>
<td>Background</td>
<td>If 2nd muon not detected</td>
<td>Usually low, measure to $>10 \ \tau_\mu$</td>
</tr>
<tr>
<td>Small samples</td>
<td>Can use veto counters</td>
<td>Must use collimation or fly-past</td>
</tr>
<tr>
<td>Frequency response</td>
<td>Limited only by detectors and electronics (500MHz+)</td>
<td>Limited by pulse width (10 MHz)</td>
</tr>
</tbody>
</table>
Designing a beam line

- Computer calculation of the focusing effect of all elements – TRANSPORT
- “Transfer matrix” method to first or second order – fast calculation
- Finds required fields to focus the beam correctly and best locations for slits
- Plots beam envelopes along the beam line
Designing a beam line

- Computer calculation by “ray tracing” individual muons – TURTLE
- More computer time needed – was slow on old computers
- High order corrections and arbitrary apertures included
- Calculate flux at sample and identify where other muons are being stopped
Monitoring the beam line

- Rates of muons counted in the instrument
 - large sample plate or small fly-past sample
- Standard samples for beam steering and spot size measurements
 - combination of materials giving different relaxation signals
- Slit Counters
 - thin strip of scintillator along the edges of the slits

- Beam Camera for direct spot imaging at the sample position
 - plate of scintillator viewed by a sensitive CCD camera

Beam Spot Marker (sample holder)
The ISIS muon beam lines today

South side (EC Muons)

North side (RIKEN)