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SuperconductivitySuperconductivity

“Superconductivity is 
perhaps the most 
remarkable physical 
property in the 
Universe”

David Pines
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The superconducting elementsThe superconducting elements
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Superconductivity in alloys and oxidesSuperconductivity in alloys and oxides
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The two characteristic length scalesThe two characteristic length scales

ξ - the coherence length

The length scale over 
which the superconducting 
wave function Ψ varies

λ - the penetration depth

The length scale over 
which the flux density 
varies
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Type I superconductivity; ξ>λType I superconductivity; ξ>λ

This is the intermediate state

Creating a surface 
between normal and 
superconducting regions 
costs energy…..

…. hence relatively few thick 
normal “domains” form 
(under conditions of large 
demagnetising factors) 
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Type II superconductivity; λ>ξType II superconductivity; λ>ξ

This is the mixed state

Here the surface energy is 
negative, ie flux penetration 
occurs spontaneously to 
reduce energy

Therefore as many small 
regions of normal domains 
(flux lines) form as possible
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The mixed state in Type II superconductorsThe mixed state in Type II superconductors

B
Hc1< H <Hc2

The bulk is diamagnetic but it is 
threaded with normal cores

The flux within each core is generated 
by a vortex of supercurrent

Hc2Hc1 H
0

-M
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The flux latticeThe flux lattice

10μ10μmm

22μμmm
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The flux line latticeThe flux line lattice
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Field distributionsField distributions
In the London limit (ξ is very small) the variation of field 
around a vortex is 
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For fields somewhat above Hc1 typical flux line separation 
is a<λ and flux lines overlap
Since each flux line carries one flux quantum Φo (=h/2e) 
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Small angle neutron scatteringSmall angle neutron scattering
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Flux distrbutionsFlux distrbutions



Muon Training Course 2008: SuperconductivityMuon Training Course 2008: Superconductivity

Probing the flux lattice with muonsProbing the flux lattice with muons

100nm100nm
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Calculating the field distributionCalculating the field distribution

For an ideal flux lattice the internal flux density is periodic and
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In the London limit the fourier components 22G G1

1b
λ+

=

The second moment of the field distribution is given by

( ) 2/1

cell
unit

222 drB)r(BB 2
1

⎥⎦
⎤

⎢⎣
⎡ −=Δ ∫

Therefore
2/1

0G

2
G

2 bBB 2
1

⎥⎦
⎤

⎢⎣
⎡=Δ ∑

≠

2/1

0G
222 )G1(

1B ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

λ+
= ∑

≠

For H>>Hc1 = ⎟
⎠

⎞
⎜
⎝

⎛
ξ
λ

πλ
Φ ln

4 2
o (so that λ .G >> 1) we find             

2/1

4

2
o2 00371.0B 2

1

⎥⎦

⎤
⎢⎣

⎡
λ

Φ
=Δ



Muon Training Course 2008: SuperconductivityMuon Training Course 2008: Superconductivity

Relating σ to the penetration depthRelating σ to the penetration depth

The effects of distortions and defects in the flux lattice 
often smear the flux distribution, p(B), and lead to  a 
Gaussian form for p(B) 
In this case the transverse field relaxation, Gx(t) is also 
Gaussian: 22t

x e)t(G σ−=

2

2
2 2B

μγ
σ

=Δand

with σ  in μs-1 and λ in nm.
2

75780
λ

=σ

The Gaussian approximation thus provides a simple 
relationship between σ and λ, 

-and is often a reasonable approximation

But ideally Max Ent should be used to extract the field profile
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LuNi2B2C  Tc=16KLuNi2B2C  Tc=16K
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Temperature dependence of λTemperature dependence of λ
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YB6, Tc=6KYB6, Tc=6K
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Amorphous Zr-Fe - using max entAmorphous Zr-Fe - using max ent

Field (mT)
38 39 40 41 42

P
(B

)

0

20

40

60

80

100

Field (mT)

39 40 41 42

P
(B

)

0

25

50

75

100

aa--ZrZr7676FeFe2424

Tc = 1.7K , λ = 500nm, ξ =  29nm
Manuel and Kilcoyne 



Muon Training Course 2008: SuperconductivityMuon Training Course 2008: Superconductivity

Flux lattice meltingFlux lattice melting

The effects of vortex lattice 
melting in the high 
temperature can be measured 
via the asymmetry of P(B), as 
defined by 

α = <ΔB3>1/3/ <ΔB2>1/2

Lee et al PRB 55 (1997) 5666

T<TT<Tmm<<TTcc TTmm<T<<T<TTcc
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Melting/Decoupling of vortices in ET2Cu(SCN)2Melting/Decoupling of vortices in ET2Cu(SCN)2

3D Flux Lattice

Decoupled 2D Layers

Pratt et al



Muon Training Course 2008: SuperconductivityMuon Training Course 2008: Superconductivity

Melting/Decoupling of vortices in ET2Cu(SCN)2Melting/Decoupling of vortices in ET2Cu(SCN)2
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Uemura’s universal correlationsUemura’s universal correlations

(Uemura, PRL 66 (1991) 2665)
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The Uemura plotThe Uemura plot
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The general London formula gives

so in the clean limit (ξ/le <<1), we have 

*m
)0(n)0( s∝σ

Note that for a quasi-2d non-interacting electron gas  the Fermi 
temperature is given by

*m
n)(Tk d2s2

FB π= h

Uemura’s result  therefore implies a direct correlation
between  TC and TF
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The Uemura plotThe Uemura plot
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For a 3d system, the Fermi temperature is given by
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As the Sommerfeld constant, γ,  is given by

λ(0) , and hence σ(0), can then be combined with γ to 
provide
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This is the basis of the generalised Uemura plot of  Tc v TF

Uemura and Cywinski
Muon Science p165-172 (Editors: S L Lee, S H 
Kilcoyne and R Cywinski, IOP Publishing 1999)
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Evidence for  unconventional superconductivity?Evidence for  unconventional superconductivity?

Uemura et al PRL 66 (1991) 2665
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Spin fluctuations as the pairing mechanism ?Spin fluctuations as the pairing mechanism ?

Nakamura, Moriya and  Ueda
J Phys Soc Japn 65 (1996) 4026

Within the framework of 
Self Consistent 
Renormalsation (SCR) 
theory this suggests that 
similar antiferromagnetic 
spin fluctuations  may be 
responsible in all systems

Zr2Rh

Experiment shows that Tc
also correlates with the 
effective “spin fluctuation”
temperature, as measured 
with neutrons, in many 
“exotic” superconductors:

Tc/To ~1/30
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Molecular superconductorsMolecular superconductors

Molecular systems appear to 
have their own empirical 
scaling law: 

Tc follows 1/λ3 rather than 1/λ2

⇒ Tc ∝ (ns/mb) 3/2

Pratt and Blundell
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Cold muons and superconductivityCold muons and superconductivity

PSI

Muons are cryogenically 
moderated and energy 
selected to tune localisation
depth within the sample:

E(keV) R(nm) ΔR(nm)
0.010 0.5 0.3

0.100 2.1 1.3

1.0 13.1 5.4

10.0 75.0 18.0

30.0 244.0 36.0

See Morenzoni in “Muon Science”
eds Lee, Kilcoyne and Cywinski, 1998
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Cold muons at PSICold muons at PSI

….but the efficiency is very low (~10-5)
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Flux penetration with cold muonsFlux penetration with cold muons

Niedermayer, Forgan et al
PRL83, 3935, 1999

YBa2Cu2O7

Ag

simulated measured
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ConclusionsConclusions

Transverse field muon spin rotation is a sensitive probe of 
the superconducting state offering some of the most 
precise measurements of the penetration depth in bulk 
samples

MuSR complements small angle neutron scattering 
measurements which provide information on long range 
order of the flux line lattice

MuSR provides access to estimates of the fundamental 
parameters of the superconducting state, and allows their 
temperature dependence to be measured – this can 
provide new insights into the underlying physics of 
superconductivity
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