Complementarity between NMR and µSR

(for solid- state physics)

P. Mendels Lab. Physique des solides Univ. Paris-Sud Orsay

- Both probes are bulk, local probes: integrate over q, same formalism
- Difference through (i) the coupling to the environment

(ii) the time window, the field range

(iii) sample details

µSR and NMR: milestones (1)

Bloch & Purcell, Nobel Physique 1952

Ernst, Nobel Chimie 1991

Wuthrich, Nobel Chimie 2002

Lauterbur & Mansfeld, Nobel Medecine 2003

µSR and NMR: milestones (2)

µSR and NMR: milestones (3)

Lee & Yang Nobel Prize Physics 1953

J. Brewer Brockhouse Medal, 2008

Y. Uemura Yamazaki Prize, 2005

E. Morenzoni Yamazaki Prize, 2008

µSR: some key features

- $S_{\mu} = 1/2$. No quadrupolar effect
- LIFETIME τ_{μ} = 2.2 µs
- Implantation in all materials.
- Material and temperature independent sensitivity.
- Bulk probe (200 µm penetration, 150 mg/cm²)... LEM!
- Implantation in one well-defined (or several) site(s):
 Oµ⁻, 0.1 nm bond in oxides
- 100% spin polarized probe
- Diluted probe
- m_{μ} = 1/9 m_{p_1} Possible diffusion of the muon: T > 150-200 K
- μ_{μ} = 3.2 μ_{p} ; γ_{μ} = 13.55 MHz/kG
- Beam spot: 7 to 30 mm. Reduced in background free setups
- H < 7 Teslas

From NMR basics (1)

Nuclear spin I in a magnetic field H_0 Zeeman effect : $H = -\mu H_0 = -\gamma \hbar H_0 I_z$ Energy levels E = $-m\gamma \hbar H_0$, m=-I, -I+1 ... I-1, I

ZFNMR: impossible...not common, also NQR

From NMR basics (2)

Nuclear magnetic moment $\vec{M} = \gamma \vec{hI}$

Common NMR Active Nuclei

Isotope	Spin	%age	γ
	Ι	abundance	MHz/T
${}^{1}\mathrm{H}$	1/2	99.985	42.575
$^{2}\mathrm{H}$	1	0.015	6.53
$^{13}\mathrm{C}$	1/2	1.108	10.71
^{14}N	1	99.63	3.078
^{15}N	1/2	0.37	4.32
¹⁷ O	5/2	0.037	5.77
$^{19}\mathrm{F}$	1/2	100	40.08
^{23}Na	3/2	100	11.27
^{31}P	1/2	100	17.25

 γ_{μ} = 135.5 MHz/T

μ^+ is a very sensitive probe

From NMR basics (3)

eNMR

NMR Periodic Table

Group	Ι	П		IIIa	IVa	Va	VIa	VIIa	VIIIa	VIIIb	VIIIc	IB	IIB	Ш	IV	V	VI	VII	VIII
Period	eriod																		
1	1 <u>H</u>		2 <u>He</u>										2 <u>He</u>						
2	3 <u>Li</u>	4 <u>Be</u>									5 <u>B</u>	6 <u>C</u>	7 <u>N</u>	8 <u>0</u>	9 <u>F</u>	10 <u>Ne</u>			
3	11 <u>Na</u>	12 <u>Mg</u>								13 <u>Al</u>	14 <u>Si</u>	15 <u>P</u>	16 <u>S</u>	17 <u>Cl</u>	18 Ar				
4	19 <u>K</u>	20 <u>Ca</u>		21 <u>Sc</u>	22 <u>Ti</u>	23 <u>V</u>	24 <u>Cr</u>	25 <u>Mn</u>	26 <u>Fe</u>	27 <u>Co</u>	28 <u>Ni</u>	29 <u>Cu</u>	30 <u>Zn</u>	31 <u>Ga</u>	32 <u>Ge</u>	33 <u>As</u>	34 <u>Se</u>	35 <u>Br</u>	36 <u>Kr</u>
5	37 <u>Rb</u>	38 <u>Sr</u>		39 <u>Y</u>	40 <u>Zr</u>	41 <u>Nb</u>	42 <u>Mo</u>	43 Tc	44 <u>Ru</u>	45 <u>Rh</u>	46 Pd	47 <u>Ag</u>	48 <u>Cd</u>	49 <u>In</u>	50 <u>Sn</u>	51 <u>Sb</u>	52 <u>Te</u>	53 <u>I</u>	54 <u>Xe</u>
6	55 <u>Cs</u>	56 <u>Ba</u>	*	71 <u>Lu</u>	72 <u>Hf</u>	73 <u>Ta</u>	74 <u>W</u>	75 <u>Re</u>	76 <u>Os</u>	77 <u>Ir</u>	78 <u>Pt</u>	79 <u>Au</u>	80 <u>Hg</u>	81 <u>Tl</u>	82 <u>Pb</u>	83 <u>Bi</u>	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	**	103 Lr	104 Unq	105 Unp	106 Unh	107 Uns	108 Uno	109 Mt	110 Uun	111 Uuu	112 Uub	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
*Lan	anthanides * 57 58 59 60 61 62 63 64 65 66 67 68 69 70 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb																		
**A	ctinides	6	**	89 Ac	90 Th	91 Pa	92 <u>U</u>	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

Nuclear Spins 1/2 1 3/2 5/2 7/2 9/2

Many resident nuclei but... sensitivity, detection pbs...

From NMR basics (4)

With NMR we study the time evolution of nuclear magnetization, driven by the hyperfine interactions...

$$\mathcal{H} = \mathcal{H}_{Z} + \mathcal{H}_{n-n} + \mathcal{H}_{n-e} + \mathcal{H}_{EFG}$$
$$\mathcal{H}_{Z} = -\gamma \hbar \sum_{i} I_{z}^{i} H_{0} .$$
$$\mathcal{H}_{n-n} = \sum_{j < k} \frac{\hbar^{2} \gamma^{2}}{r^{3}} \left(A + B + C + D + E + F \right)_{jk}$$
$$\mathcal{H}_{n-e} = -\gamma \hbar \sum_{i,k} I_{i} \tilde{A}_{ik} S_{k}$$
$$\mathcal{H}_{EFG} = \sum_{i} \frac{e^{2} Q V_{ZZ}}{4I(2I-1)} \left(3(I_{z}^{i})^{2} - I(I+1) + \frac{\eta}{2} [(I_{+}^{i})^{2} + (I_{-}^{i})^{2}] \right)$$

A very involved Hamiltonian...quite rewarding

The equations are the same!

$$\tilde{\Delta K} = \frac{\sum_k \tilde{A}_k < \boldsymbol{S}_k >}{H_0}$$

$$\frac{1}{T_1} = \frac{\gamma^2}{2} \int_{-\infty}^{+\infty} e^{i\omega_0 t} < h_+(t)h_-(0) > dt$$

A_k, h: coupling to the neighbourhood is what matters!

Electron-nucleus interaction

From NMR basics (6)

With NMR we study the time evolution of nuclear magnetization, driven by the hyperfine interactions...

$$\mathcal{H} = \mathcal{H}_{Z} + \mathcal{H}_{n-n} + \mathcal{H}_{n-e} + \mathcal{H}_{EFG}$$
$$\mathcal{H}_{Z} = -\gamma \hbar \sum_{i} I_{z}^{i} H_{0} .$$
$$\mathcal{H}_{n-n} = \sum_{j < k} \frac{\hbar^{2} \gamma^{2}}{r^{3}} \left(A + B + C + D + E + F \right)_{jk}$$
$$\mathcal{H}_{n-e} = -\gamma \hbar \sum_{i,k} I_{i} \tilde{A}_{ik} S_{k}$$
$$\mathcal{H}_{EFG} = \sum_{i} \frac{e^{2} Q V_{ZZ}}{4I(2I-1)} \left(3(I_{z}^{i})^{2} - I(I+1) + \frac{\eta}{2} [(I_{+}^{i})^{2} + (I_{-}^{i})^{2}] \right)$$

A very involved Hamiltonian...quite rewarding

From NMR basics: quadrupole interaction (7)

If I>1/2, nuclear spin I is sensitive to any Electric Field Gradient from the lattice

$$\mathcal{H}_{EFG} = \sum_{i} \frac{e^2 Q V_{ZZ}}{4I(2I-1)} \left(3(I_z^i)^2 - I(I+1) + \frac{\eta}{2} [(I_+^i)^2 + (I_-^i)^2] \right)$$

From NMR basics: quadrupole interaction (8)

Quadrupolar nuclei: rich but involved on powders

From NMR basics: quadrupole interaction (9)

If I>1/2, nuclear spin I is sensitive to any Electric Field Gradient from the lattice

An NMR lab

Radiofrequency pulse ~ few μ sec

From NMR technique: time window

Time window: 10 µs ... mn

Orders of magnitude NMR vs µSR

- Local field 10 100 times larger in NMR
- γ 10 times smaller in NMR
- Time window start 1000 time larger in NMR
- Time window end infty in NMR

One example: fast fluctuations

 $1/T_1 = (\gamma B)^2 \tau$

μ⁺: smaller couplings, shorter times

- Accurate measurement of χ

Sometimes too broad lines when frozen moments

NMR/µSR: a comparative summary

	μSR	NMR
Which sample?	All, easy	Many <mark>needs time</mark>
Time window	Few ns20 µs	10 µsmn
Location/coupling	Interstitial, where???	At. Site, hyperfine
	0.1 T/ μ _в	0.1 T – 10 T/ μ _B
Sensitivity	Magnetic transitions	Magnetic suscentibilities
	Background	Whole sample?
Temperature range	10 mK – 800 K	10 mK – 1000 K
Field range	0 – 6 T	1 – 45 T
Dynamics	Fast dynamics	Slow dynamics
Intrinsic drawback	Additional charge and moment	r.f. field needed, field needed Tuning of the probe

Think and select the best: µSR, a front tool but...

ZF Phase diagrams in a family of samples

An End to the Drought of Quantum Spin Liquids

Patrick A. Lee

After decades of searching, several promising examples of a new quantum state of matter have now emerged.

Science, perspectives sept 2008

µSR: direct comparison, easiness to track transitions, ZF

ZF Phase diagrams in a family of samples

 $Zn_{x}Cu_{4-x}(OH)_{6}CI_{2}$ at a camite family

µSR: direct comparison, easiness to track transitions, ZF

Detection of small frozen moments

P. Mendels et al, PRL 98, 077204 (2007)

μ⁺: small nuclear fields (~G) in the paramagnetic state

Spin glasses (1): statics

 μ^+ : smaller couplings, shorter times \longleftarrow broad lines

Spin glasses (2): dynamics

D.E.MacLaughlin and H. Alloul, PRL 1976

A. Keren, P. Mendels et al., PRL 1996

Also study of critical exponents at magnetic transitions

μ⁺: smaller couplings, shorter times. NMR wipe-out

NaCrO₂: original dynamics

Measurement of local susceptibility (1)

T (K)

μ⁺: smaller coupling, located differently...but where?

Measurement of local susceptibility (2)

Perturb to reveal: selectivity of the coupling in NMR

Superconductivity: penetration depth

J. Sonier et al., PRL 1994, 1999 Review of Modern Physics, (2000)

Y.J. Uemura et al., PRL1991

 μ^+ : absolute value of λ but hard to probe vortex cores; So easy that early materials are an issue with respect to quality

Superconductivity: vortex lattice

Need of a sizeable transverse field, $H_{c1} < H < H_{c2}$

NMR: relaxation from vortex cores

Frustrated magnets: spin liquid like states

Spin Fluctuations in Frustrated Kagomé Lattice System SrCr₈Ga₄O₁₉ Studied by Muon Spin Relaxation

Y.J. Uemura et al., PRL 1994

NMR: wipe-out when slowing down of fluctuations

NMR in High Magnetic Fields

Magnetic Superstructure in the Two-Dimensional Quantum Antiferromagnet SrCu₂(BO₃)₂

Kodama, Science 2002

Large scale facilities ... users friendly?

µSR in Thin Films (Z. Salman's course)

E. Morenzoni: 2nd Yamazaki Prize

NMR in ferromagnetic multilayers

THEFT Characteristics of the measured matthayers.							
	Co thickness	Cu thickness					
Sample	(A)	(A)	Buffer				
(15-Å Co)/(15-Å Cu)	15	15	Fe				
(15-Å Co)/(20-Å Cu)	15	20	Fe				
$(60-\text{\AA Co})/(20-\text{\AA Cu})$	60	20	Cu				

60

60

(60-Å Co)/(60-Å Cu)

(60-Å Co)/(90-Å Cu)

60

90

Cu

Cu

TABLE I Characteristics of the measured multilayers

Intensity Spin-Echo

Co-10 at.% Cu Co-6 at.%Cu Co-2 at. %Cu 200 150 250 100 Frequency (MHz)

Work from Panissod Co/Cu mutilayers (1992)

Marginal as compared to the world of thin films

Do μ^+ impact the physics?

 μ^+ is an added moment

Or an added charge which changes J

A marginal case, then physically interesting!

Do μ^+ impact the physics?

the three sites shown in Fig. 3.

Chakhalian, PRL 2003

A marginal case, then physically interesting!

Do μ^+ impact the physics?

More with High Tc's vs orbital currents (Varma)

A marginal case, then physically interesting!

Do μ^+ impact the physics?

 μ^+ is an added charge!

Feyerherm, 1995

Crystal field levels in rare earth compound PrNi5

With RE elements, depending on CEF, $\chi_{\mu SR}$ is modified!

References

• Textbooks :

- Abragam A., The Principles of Nuclear Magnetism, Clarendon Press, Oxford 1961
- Slichter C.P., Principles of Magnetic Resonance, Springer Verlag, 1978
- A.Narath: Hyperfine Interactions, ed. A. J. Freeman and R. B. Frankel (Academic Press, New York, 1967) Chap. 7
- Understanding NMR Spectroscopy, J. Keeler, Wiley
- More specialized :
- R. Walstedt, The NMR probe of high Tc materials, Springer Tracts in Modern Physics
- Reviews in correlated systems :
- Berthier C., Julien M.H., Horvatic M., Berthier Y., J. Phys. I France 6, 2205 (1996)
- <u>Defects in correlated metals and superconductors</u> Alloul et al., Rev. Mod. Phys. 81, 45 (2009)
- <u>Nuclear magnetic resonance of C60 and fulleride superconductors</u>, Charles H. Pennington and Victor A. Stenger, Rev. Mod. Phys. 68, 855 (1996)
- On the web :
- « the basics of NMR » http://www.cis.rit.edu/htbooks/nmr/inside.htm
- Spectroscopy site : <u>http://www.spectroscopynow.com/coi/cda/home.cda?chld=0</u>
- See also the very complementary examples from P. Carretta at the previous school

Acknowledgements: J. Bobroff, P. Carretta, J.E. Sonier