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Introduction

• In a very large number of processes in biology, chemistry, solid state physics, 
soft matter physics, nuclear physics..... one has to deal with diffusion 
phenomena and particle dynamics

• Invariably these are limited by potential barriers.

• If the diffusion process alters the magnetic environment of the muon, then the 
muon can measure it.
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Hyperfine coupling in muonium
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Muonium

Chapter 4

Muonium Physics

As demonstrated in chapter 3.2 the electron spin and the muon spin of a muonium are coupled
by the hyperfine (HF) interaction once a muonium has been formed. In this chapter, the time-
dependent behaviour of this coupled spin system in an externally applied magnetic field is
presented. In subchapter 4.1, the characteristics of the isolated isotropic muonium are shown,
followed by a discussion of the more complicated case where the HF interaction is anisotropic
(chapter 4.2). In subchapter 4.3, the so-called avoided level crossing (ALC) is introduced and
it is shown that it provides unique information about the properties of the muonium and its en-
vironment, including the dynamics of the electron spin. In subchapter 4.4, the behaviour of the
coupled spin system in a transverse magnetic field is presented.

4.1 Isotropic Muonium in a Longitudinal Magnetic Field
The isolated isotropic muonium serves as a simple example to demonstrate the principle effects
of the interaction between the electron spin, Se, and the muon spin, Sµ, in an external magnetic
field. The HF coupling strength of such a muonium is solely described by the isotropic HF
coupling constant, A. To account for the interaction between the electron and the muon spin,
respectively, and the magnetic field, B, Equation 2.17 has to be extended by the Zeeman terms
to [104]

H0 = −γµ"Sµ · "B + γe"Se · "B + A"Sµ · "Se. (4.1)

The spins are defined by the four-dimensional Pauli spin matrices, which are used to calculate
the energy levels of the coupled two-spin system. The energy eigenvalues are given by [104]
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Figure 4.1: a) Breit-Rabi diagram of an isolated isotropic muonium in a longitudinal magnetic field. In zero-
field the triplet states are degenerate and at distinctively higher energy than the singlet state. The degeneracy
of the triplet states is lifted in the magnetic field. b) The energetic difference between the triplet statesmS = +1
and mS = 0 is shown. The energy levels E1 and E2 cross at about 16.4 T. The inset illustrates the energy level
crossing. The level crossing only occurs in the absence of additional interactions (see chapter 4.3).

Figure 4.1a shows the behaviour of the energy levels in the external magnetic field. The two-
spin system exists either as a triplet (E1-E3) or as a singlet (E4) state. The degeneracy of the
triplet states is lifted by the external magnetic field (Zeeman interaction). The energy levels E1
and E2 intersect at about 16.4 T as can be seen in the main graph of Figure 4.1b, where the
difference of E1 and E2 vanishes. The inset of the same figure illustrates this crossing.
One can use the product of the spin up and down vectors of the muon and the electron to
define the eigenvectors of this coupled spin system [104]

| Ψ1〉 = |↑µ↑e〉 (4.6)

| Ψ2〉 = c1 |↑µ↓e〉 + c2 |↓µ↑e〉 (4.7)

| Ψ3〉 = |↓µ↓e〉 (4.8)

| Ψ4〉 = c2 |↑µ↓e〉 − c1 |↓µ↑e〉, (4.9)

where the prefactors are given by

c1 =
1√
2

√√√
1 − B

√
B20 + B2

(4.10)

and

c2 =
1√
2

√√√
1 +

B
√
B20 + B2

. (4.11)

Muonium

S Blundell, Chemical Review, 104:5717–5735, 2004. 
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Since the incoming 100 % spin-polarised muons are coupled to unpolarised electrons, the spin
system can initially be either in the |↑µ↑e〉 state (50 %) or in the |↑µ↓e〉 state (50 %). The former
corresponds to the | Ψ1〉 state (Equation 4.6). The latter is a combination of the states 4.7 and
4.9 [104].
The time evolution of the muon spin ensemble in the muonium state will be derived with the
spin density matrix formalism as presented in [105]. At t = 0, the terms describing the electron
polarisation and the mixed polarisations are zero. Thus, the spin density matrix is given by
[105]

ρ(0) =
1
4

(
1 + "Pµ(0) · "σ

)
(4.12)

where "Pµ(t = 0) = (0,0,1) is the initial muon spin polarisation. "σ denotes the four-dimensional
Pauli spin matrix of the muon spin. Equation 4.12 can be simplified, if B points into the z-
direction. Now, only the polarisation of the muon spin along the z-direction shall be regarded.
Equation 4.12 takes the following form:

ρ(0) =
1
4
(1 + σz) . (4.13)

The application of the quantum mechanical equation of motion i!dρ/dt = [H, ρ] provides the
time- and field-dependent spin polarisation

Pµ(t) = Tr
[(
exp

(−iHt
!

)
ρ(0)exp

(
iHt
!

))
· "σ

]
. (4.14)

Performing this calculation leads to the field-dependent time evolution of the muon spin polar-
isation [104, 105]

Pµ(t) =
A2 + 2B2

(
γe + γµ

)2

2A2 + 2B2
(
γe + γµ

)2
︸!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!︸

Non−oscillatory part

+
A2

2A2 + 2B2
(
γe + γµ

)2 cos (ω24t)

︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸
Oscillatory part

(4.15)

= Pµ,iso + Posc. (4.16)

The polarisation function, Pµ(t), consists of two parts: The non-oscillatory part, Pµ,iso, the
so-called repolarisation curve, and the oscillatory component, Posc, the so-called Rabi os-
cillation. The spin polarisation of the muon ensemble oscillates at a frequency of ω24 =√
A2 + B2

(
γe + γµ

)2 which corresponds to the energy difference of E2 and E4.
Figure 4.2a shows that the polarisation at B = 0 oscillates between 0 and 1. This arises from
the superposition of the non-oscillatory polarisation of 0.5 from the |↑µ↑e〉 state and the compon-
ent that oscillates between +0.5 and -0.5 originating from the |↑µ↓e〉 state. An external magnetic
field modifies the state |↑µ↓e〉, because the prefactors c1 and c2 (Equ. 4.10 and 4.11) are field-
dependent. The Figures 4.2b-d demonstrate how the amplitude reduces and the oscillation
frequency increases as the energetic distance between E2 and E4 widens in the magnetic field
(c.f. Figure 4.1a). In Figure 4.2c the external magnetic field B = 0.1585 T (Figure 4.2d) matches
the HF coupling strength of 4.46 GHz. In the limit of very high magnetic fields, the oscillation
amplitude vanishes as c1 → 0 and c2 → 1 [104].
In a real ALC experiment, these Rabi oscillations are usually very fast and can often not be
resolved. The time-averaged spin polarisation of the muon ensemble is [106]:

Pµ =
∫ ∞
0 Pµ(t)e−λtdt
∫ ∞
0 e−λtdt

. (4.17)
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Figure 4.1: a) Breit-Rabi diagram of an isolated isotropic muonium in a longitudinal magnetic field. In zero-
field the triplet states are degenerate and at distinctively higher energy than the singlet state. The degeneracy
of the triplet states is lifted in the magnetic field. b) The energetic difference between the triplet statesmS = +1
and mS = 0 is shown. The energy levels E1 and E2 cross at about 16.4 T. The inset illustrates the energy level
crossing. The level crossing only occurs in the absence of additional interactions (see chapter 4.3).

Figure 4.1a shows the behaviour of the energy levels in the external magnetic field. The two-
spin system exists either as a triplet (E1-E3) or as a singlet (E4) state. The degeneracy of the
triplet states is lifted by the external magnetic field (Zeeman interaction). The energy levels E1
and E2 intersect at about 16.4 T as can be seen in the main graph of Figure 4.1b, where the
difference of E1 and E2 vanishes. The inset of the same figure illustrates this crossing.
One can use the product of the spin up and down vectors of the muon and the electron to
define the eigenvectors of this coupled spin system [104]
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One can define the eigenvectors of this coupled spin system:
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Figure 4.1a shows the behaviour of the energy levels in the external magnetic field. The two-
spin system exists either as a triplet (E1-E3) or as a singlet (E4) state. The degeneracy of the
triplet states is lifted by the external magnetic field (Zeeman interaction). The energy levels E1
and E2 intersect at about 16.4 T as can be seen in the main graph of Figure 4.1b, where the
difference of E1 and E2 vanishes. The inset of the same figure illustrates this crossing.
One can use the product of the spin up and down vectors of the muon and the electron to
define the eigenvectors of this coupled spin system [104]

| Ψ1〉 = |↑µ↑e〉 (4.6)

| Ψ2〉 = c1 |↑µ↓e〉 + c2 |↓µ↑e〉 (4.7)

| Ψ3〉 = |↓µ↓e〉 (4.8)

| Ψ4〉 = c2 |↑µ↓e〉 − c1 |↓µ↑e〉, (4.9)

where the prefactors are given by

c1 =
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√√√
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B20 + B2

(4.10)

and
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Where

By using the spin density matrix formalism, it is possible to show that the polarisation 
of the muon’s spin oscillates with respect to time:

B. Patterson, Reviews of Modern Physics, 60(1):69, 1988. 
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Since the incoming 100 % spin-polarised muons are coupled to unpolarised electrons, the spin
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4
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)
(4.12)

where "Pµ(t = 0) = (0,0,1) is the initial muon spin polarisation. "σ denotes the four-dimensional
Pauli spin matrix of the muon spin. Equation 4.12 can be simplified, if B points into the z-
direction. Now, only the polarisation of the muon spin along the z-direction shall be regarded.
Equation 4.12 takes the following form:

ρ(0) =
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4
(1 + σz) . (4.13)

The application of the quantum mechanical equation of motion i!dρ/dt = [H, ρ] provides the
time- and field-dependent spin polarisation
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Performing this calculation leads to the field-dependent time evolution of the muon spin polar-
isation [104, 105]
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= Pµ,iso + Posc. (4.16)

The polarisation function, Pµ(t), consists of two parts: The non-oscillatory part, Pµ,iso, the
so-called repolarisation curve, and the oscillatory component, Posc, the so-called Rabi os-
cillation. The spin polarisation of the muon ensemble oscillates at a frequency of ω24 =√
A2 + B2

(
γe + γµ

)2 which corresponds to the energy difference of E2 and E4.
Figure 4.2a shows that the polarisation at B = 0 oscillates between 0 and 1. This arises from
the superposition of the non-oscillatory polarisation of 0.5 from the |↑µ↑e〉 state and the compon-
ent that oscillates between +0.5 and -0.5 originating from the |↑µ↓e〉 state. An external magnetic
field modifies the state |↑µ↓e〉, because the prefactors c1 and c2 (Equ. 4.10 and 4.11) are field-
dependent. The Figures 4.2b-d demonstrate how the amplitude reduces and the oscillation
frequency increases as the energetic distance between E2 and E4 widens in the magnetic field
(c.f. Figure 4.1a). In Figure 4.2c the external magnetic field B = 0.1585 T (Figure 4.2d) matches
the HF coupling strength of 4.46 GHz. In the limit of very high magnetic fields, the oscillation
amplitude vanishes as c1 → 0 and c2 → 1 [104].
In a real ALC experiment, these Rabi oscillations are usually very fast and can often not be
resolved. The time-averaged spin polarisation of the muon ensemble is [106]:
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. (4.17)

Muonium
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Tangent..... Beware of protons.....
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where 〈cos2 φ〉 ≈ 1/3 corresponds to the powder average.
In the case of a fully anisotropically coupled spin system, the principle axes of the hyperfine
coupling tensor Ã are defined as Ax=A − D1/2 − D2/2, Ay=A − D1/2 + D2/2 and Az=A − D1 [64].
The dipolar parameters D1 and D2 describe the anisotropy of the system. The repolarisation
curve is then approximated by [64]

Pµ,full =
1
6




(
γe − γµ

)2
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5
12D22 +
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)2 B2


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
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15
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)2 B2


 +

1
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
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A2 +
(
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)2 B2


 . (4.21)

In an organic material, there are often several muonium sites. Each muonium site gives rise to
an individual repolarisation curve. Thus, a linear combination of the equations 4.18, 4.20 and
4.21 is used to fit the repolarisation data.
In addition to the anisotropy, spin-1/2 nuclei are taken into account. The Hamiltonian H = H0 +
Hµ,aniso + Hnuclei of this multi-spin system for axial symmetry is defined as follows [84]

H0 = −γµ#Sµ · #B + γe#Se · #B + A#Sµ · #Se (4.22)

Hµ,aniso =
1
2
Aµ

(
S+e S−µ + S−e S+µ

)
− Dµ,⊥

[ (
1 − 3 cos2 θ

)
SeSµ (4.23)

− 1
4

(
1 − 3 cos2 θ

) (
S+e S−µ + S−e S+µ

)
∆M = 0 (4.24)

− 3
2

(
sin θ cos θ exp(−iφ))

(
SeS+µ + S+e Sµ

)
∆M = 1 (4.25)

− 3
2

(
sin θ cos θ exp(+iφ))

(
SeS−µ + S−e Sµ

)
∆M = 1 (4.26)

− 3
4

(
sin2 θ exp(−2iφ)

) (
S+e S+µ

)
∆M = 2 (4.27)

− 3
4

(
sin2 θ exp(+2iφ)

) (
S−e S−µ

) ]
∆M = 2 (4.28)

Hnuclei =
n∑

k=1

−γkIk · Bz
︸!!!!!!!!!!︷︷!!!!!!!!!!︸
Zeeman term

+
1
2
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)
(4.29)

−
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)
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− 3
2

(
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)
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− 3
4

(
sin2 θ exp(−2iφ)

) (
S+e I+k

)
∆M = 2 (4.34)

− 3
4

(
sin2 θ exp(+2iφ)

) (
S−e I−k

) ]
. ∆M = 2 (4.35)

The addition of a single extra spin 
(muon-electron-proton) makes the 
maths considerably harder.... 

Anything more complicated needs to 
be solved numerically (or by a 
theoretician).
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Tangent..... Beware of protons.....
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Tangent..... Beware of protons.....
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Charge carrier dynamics probed with muonium
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• If the muonium electron is mobile, the it results in a modulation of the HFC

• Qualitatively, the modulation of HF interactions result in a relaxation of the 
muon’s spin. How?

Relaxation effects

Single muonium

Ensemble

Spin-polarized muons in condensed matter physics S. J. Blundell 14

condensation which is expected to occur at a tempera-
ture ∼ TF (Uemura et al. 1991). Whether or not this
speculation is correct, it is expected that this remark-
able correlation should constrain theories to explain the
superconductivity in these various exotic systems and
is possibly suggestive of a common mechanism lying
behind them.

8 Muons as active probes

In almost everything we have considered so far we have
been tacitly assuming that the muon is a passive probe
and does not disturb its surroundings. If it has been
sensitive to dynamics, we have believed that the muon
takes no part in them itself. This in fact is very of-
ten true. However, there are a number of situations
in which the muon plays an active rôle. For example,
at high temperature in copper the muon diffuses from
interstitial site to interstitial site. In this case the ma-
jor component of the observed depolarization is due to
the muon motion. In semiconductors the muonium can
undergo charge and spin exchange with conduction elec-
trons and thereby one measures dynamics with which
the muon itself is intimately involved.

An extreme case where the muon plays a strongly ac-
tive rôle is found in conducting polymers (Hayes 1995).
Figure 19 shows the reaction between muonium and
trans-polyacetylene (Nagamine et al. 1984) which pro-
duces a diamagnetic, neutral muon defect and a highly
mobile unpaired spin. This soliton diffuses up and down
the chain but cannot cross the muon defect which acts
as a barrier. Every time the soliton briefly revisits the
muon, the muon-electron hyperfine coupling is turned
on and then off, so that successive visits progressively
relax the muon polarization. Measurement of the field
dependence of this relaxation yields the spectral den-
sity function associated with the defect random walk
and can be used to infer the dimensionality of the soli-
ton diffusion (Nagamine et al. 1984). This occurs be-
cause the relaxation rate is connected with the noise
power, J(ωµ), in the fluctuating magnetic field at the
muon Larmor frequency, ωµ, associated with that par-
ticular magnetic field. Sweeping the magnetic field al-
lows one to extract the frequency distribution of the
fluctuations. In other polymers, such as polyaniline,
the muon-induced defect is a negatively charged po-
laron. Muons are uniquely sensitive to the motion of
this defect in undoped materials (Pratt et al. 1997) and
in contrast to transport studies, which are inevitably
dominated by the slowest component of the transport
process, can provide information on the intrinsic trans-
port processes governing the mobility of an electronic
excitation along a chain.

Figure 19: Muonium interaction with trans-
polyacetylene to produce a diamagnetic radical and a
mobile neutral soliton.

In more conventional materials it is the motion of the
muon itself which is of special interest. The dynamics
of light atoms such as hydrogen and muonium, or par-
ticles such as the proton and muon, are worthwhile to
study because they can provide a stringent test for theo-
ries on the quantum motion of defects and interstitials
(Storchak and Prokof’ev 1998). The smaller mass of
the muon leads to larger tunnelling matrix elements to
neighbouring sites and thus enhances the quantum me-
chanical nature of the motion. Furthermore, because
muon-muon (or muonium-muonium) interactions can
be neglected, the intrinsic nature of the dynamics can
be followed without the complications that can be found
in studying the corresponding proton or hydrogen case.

In inorganic materials the muon will usually come
to rest at an interstitial site. The stability of that
site will depend on the depth of the potential well.
It is of interest to discover whether local diffusion is
possible between interstitial sites. Another process is
trapping and release from deep potential wells associ-
ated with imperfections or defects. The muon jump
rates are found to be about ten times higher than the
corresponding proton jump rates, consistent with the
lighter muon mass. Hopping is, as expected, assisted by
phonons and thus rises with temperature, following an
approximately activated behaviour [the hop rates are
proportional to T−1/2 exp(−Ea/kBT ) where Ea is an
activation energy (Flynn and Stoneham 1972)]. This
occurs because the muon is initially ‘self-trapped’ by
its own local distortion of the lattice (Figure 20) and
a tunnelling transition is only possible if, by the ther-
mal fluctuations of the lattice which occur because of
phonons, two neighbouring energy levels coincide [the
coincidence configuration, see Figure 20(b)]. The muon
can then tunnel through the barrier and becomes self-
trapped in the next site.

Lower temperature produces fewer phonons and
hence the hop rate falls as the temperature is reduced.
However as the temperature is lowered further, a pe-
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Relaxation mechanism....

From Fermi’s Golden Rule, the transition probability between two spin states is

Spectral density function of the field fluctuation - contains full information about 
dimensionality of charge carrier motion

How to calculate for charge carrier diffusion?      

For an anisotropic random walk, 
it can be shown that:

/ � Typically, it is proportional to the 
relaxation rate of the muon

W = (�µB)2f(!µ)

f

Bessel functions
Diffusion rates along 3 dimensions

In other words � / exp

�2⌧(D1+D2+D3)

Pratt et al., Hyp. Int. 106, 33 (1997);  Pratt et al., Phys. Rev. Lett. 96, 247203 (2006); Mizoguchi, Makr. Chem. Macr. Symp. 37, 53 (1990)
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Pratt et al., Hyp. Int. 106, 33 (1997);  Pratt et al., Phys. Rev. Lett. 96, 247203 (2006)

A bit of a mess... only solved via numerical method (difficult to write a fit function)

However, can empirically fit to the following:

Exponential relaxation

For uniaxial anisotropic muonium, the actual relaxation 
rate is:

F(t) contains all the information about the mechanisms and dimensionality of the diffusion and could in 
principle include such additional factors as interchain hopping, reflection at chain ends and trapping sites 
or the presence of an initial activation barrier at the muon site.
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1D relaxation function

For 1D motion (on 
the muon’s timescale) 

λ ∝B-0.5

f

Good review: FL Pratt J. Phys.: Condens. Matter 16 (2004) S4779–S4796

Muon spin relaxation as a probe of electron motion in conducting polymers S4781
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Figure 1. (a) The two isomers of PA and (b) the unpaired electron state formed by addition
of muonium to the chain. (c) In the trans case, degeneracy of the possible bond-alternation
ground states leads to solitonic spin defects in the form of mobile bond-order domain walls [12].
Consequently the muon-generated spin defect can move freely away from the muon site as a neutral
soliton, In contrast, the cis isomer lacks the degenerate bond-alternation ground state of the trans
isomer and free solitons are not supported. In this case the spin defect can still move away in the
form of a negative polaron, leaving behind a positive charge near the muon site. Note that although
the spin is represented here as being localized at one site, the spin structure is actually spread out
over 20–30 sites.

Figure 2. The field dependence of the fitted exponential muon relaxation rate λ for trans-PA [7].
The very smallness of the isotope effect and the H −1/2 field dependence indicate that the muon spin
relaxation is dominated by coupling to mobile electronic spin excitations in the form of solitons.

In the cis isomer of PA, a completely different behaviour was seen; very small residual
asymmetry was measured at low fields with only very weak relaxation. A clear repolarization
effect was observed, where applying small longitudinal fields led to a recovery of asymmetry;
full asymmetry was regained for fields above 100 G. This behaviour was attributed to trapping
of the soliton at the muon site, due to the absence of degeneracy in the bond-alternation ground
state for this isomer. In the trapped state it is possible to make a spectroscopic measurement
of the hyperfine coupling between the spin defect and the muon. Values for A in the region
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of muonium to the chain. (c) In the trans case, degeneracy of the possible bond-alternation
ground states leads to solitonic spin defects in the form of mobile bond-order domain walls [12].
Consequently the muon-generated spin defect can move freely away from the muon site as a neutral
soliton, In contrast, the cis isomer lacks the degenerate bond-alternation ground state of the trans
isomer and free solitons are not supported. In this case the spin defect can still move away in the
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Figure 2. The field dependence of the fitted exponential muon relaxation rate λ for trans-PA [7].
The very smallness of the isotope effect and the H −1/2 field dependence indicate that the muon spin
relaxation is dominated by coupling to mobile electronic spin excitations in the form of solitons.

In the cis isomer of PA, a completely different behaviour was seen; very small residual
asymmetry was measured at low fields with only very weak relaxation. A clear repolarization
effect was observed, where applying small longitudinal fields led to a recovery of asymmetry;
full asymmetry was regained for fields above 100 G. This behaviour was attributed to trapping
of the soliton at the muon site, due to the absence of degeneracy in the bond-alternation ground
state for this isomer. In the trapped state it is possible to make a spectroscopic measurement
of the hyperfine coupling between the spin defect and the muon. Values for A in the region
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But.....

Fundamental assumption of the standard relaxation theory:

Assumes the existence of a correlation time of the fluctuations that produce the 
relaxation.... in other words, they always return to origin.

Muon spin relaxation as a probe of electron motion in conducting polymers S4781
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the spin is represented here as being localized at one site, the spin structure is actually spread out
over 20–30 sites.

Figure 2. The field dependence of the fitted exponential muon relaxation rate λ for trans-PA [7].
The very smallness of the isotope effect and the H −1/2 field dependence indicate that the muon spin
relaxation is dominated by coupling to mobile electronic spin excitations in the form of solitons.

In the cis isomer of PA, a completely different behaviour was seen; very small residual
asymmetry was measured at low fields with only very weak relaxation. A clear repolarization
effect was observed, where applying small longitudinal fields led to a recovery of asymmetry;
full asymmetry was regained for fields above 100 G. This behaviour was attributed to trapping
of the soliton at the muon site, due to the absence of degeneracy in the bond-alternation ground
state for this isomer. In the trapped state it is possible to make a spectroscopic measurement
of the hyperfine coupling between the spin defect and the muon. Values for A in the region

For a 1D process, this correlation time diverges

i.e the electron can escape the muon, never returning to its origin.

This fundamental assumption is invalid.....
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Risch-Kehr model
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hyperfine coupling)

Risch-Kerr model - Stochastic 1D model for charge carrier diffusion. 
Parameters:       1. Hyperfine coupling constant

              2. Electron hopping rate
      3. Electron spin flip rate
      4. Electron precession

Relxation rate fit function:

R. Risch & W. Kehr, Phys. Rev. B 46, 5246 (1992)
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Risch-Kehr model
S4786 F L Pratt
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Figure 7. The field dependence of the RK relaxation rate
in the fast diffusion limit (γ > ω0), where a broad region
of 1D behaviour is apparent. A high field cut-off is seen
when ωe > γ and at high fields # follows a B−4 law.

Figure 8. The field dependence of the RK relaxation rate
in the fast diffusion limit where 1D inverse field relaxation
behaviour is apparent at high fields, with and without an
additional low field cut-off at 50 G.

The overall picture that one obtains for the high field cut-off is that it is determined by
the probe frequency becoming faster than the fastest characteristic frequency of the system;
in the static and quasistatic cases this frequency is the hyperfine frequency ω0, whereas in
the presence of fast diffusion it is the hop rate γ . Above the cut-off field the relaxation rates
become significantly reduced and, due to the dominance of the square root in equation (6)
at low #t , the B−4 behaviour for the RK relaxation scales closely with the B−2 behaviour
expected from a standard Lorentzian spectral density function.

It should be noted that while the spin is diffusing, the presence of a finite value of ν, that is
significantly smaller than both ω0 and γ , is essential for the muon to see the characteristic field
dependence of the low dimensional motion. This was demonstrated in a computer simulation
reported by Jestädt et al [23], who studied a 1D diffusion model in which the electron spin
polarization is lost completely every time the electron leaves the muon site, regardless of
the time elapsed between return visits. This corresponds to the fast electron relaxation limit
ν > γ ,ω0. Although the RK relaxation function, equation (6), was clearly observed in the
simulation in the time domain, the field dependence of the relaxation rate simply showed a
high field cut-off and did not have any extended region with # ∝ B−1 or λ ∝ B−1/2.

2.3. The low field cut-off

On the low field side there is an intrinsic cut-off to the B−1 behaviour, as reflected in
equation (7), once # approaches the electron spin relaxation rate ν, as the muon cannot relax
faster than the electron in this model. If ν is sufficiently fast, then the low field cut-off may be
defined by features of the diffusion topology, as discussed earlier, rather than by ν. Information
about the interchain diffusion rate may then be inferred from such a cut-off (figure 8). Note
that this implies that for studying transport related cut-off phenomena, ν should be as large as
possible, while still being small compared to ω2

0/γ , in order to observe relatively slow cut-off
frequencies related to interchain motion.

The field dependence of the RK relaxation rate in the 
fast diffusion limit (γ > ω0), where a broad region of 
1D behaviour is apparent. A high field cut-off is seen 
when ωe > γ and at high fields follows a B−4 law.

Muon spin relaxation as a probe of electron motion in conducting polymers S4787
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Figure 9. An example showing the field dependence
of the muon spin relaxation in the RK model with
the parameters shown.

2.4. The low field relaxation function

The low field relaxation can be quite different from the higher field behaviour. In zero field
and for slow ν the relaxation takes an exponential form at early times [16], following

Gz(t) = (1 + e−ω0
2t/γ )/2, (9)

which shows a polarization plateau at 0.5, reflecting the expected residual polarization for free
muonium. Allowing for electron relaxation, the plateau relaxes and on increasing to moderate
fields (figure 9) the relaxation takes the form of the RK function at longer times (equation (6)),
with the value of $ given by

$ = ν

(1 + (γ ν/ω2
0))

2
. (10)

If ω0 is relatively large and γ relatively small, then the initial exponential relaxation may be
too fast to measure and will appear as a lost asymmetry fraction, which may be recovered
by applying a magnetic field. Numerical calculations are however necessary to adequately
describe the transition from this very low field regime to the higher field regime and test
its dependence on ω0 and the other parameters involved. RK gave an exact expression in
Laplace space for zero field (RK equations (44), (45)), which can be inverted numerically to
demonstrate the dependence of the zero-field relaxation on the diffusion rate (figure 10).

2.5. Repolarization and relaxation

The absolute accuracy of γ estimated from a measurement of $ depends on accurate knowledge
of ω0, which may be difficult to obtain in practice. In the static case, a reasonable estimate of ω0

may be determined from the mid-point of the repolarization. In the presence of fast dynamics
the determination of ω0 is not so straightforward. However, by studying together both the
repolarization of asymmetry at fixed time and the field dependent relaxation rate, it should
be possible to derive values for the two parameters γ and ω0 self-consistently. If a time is
chosen where the relaxation follows the RK function, then the Laplace domain expressions (RK
equations (54), (55)) can be inverted and used for fitting the data. The repolarization behaviour
expected for different diffusion rates is shown in figure 11 together with the corresponding
field dependences for the relaxation rate.

The field dependence of the muon 
spin relaxation in the RK model.

R. Risch & W. Kehr, Phys. Rev. B 46, 5246 (1992), FL Pratt J. Phys.: Condens. Matter 16 (2004) S4779–S4796
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Muon diffusion
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Thermalisation of muons

!

There is a local accumulation of charge density which screens the muon potential, and a small elastic 
distortion of the lattice. 

The	
  muon’s	
  are	
  effec/vely	
  “self	
  trapped”	
  -­‐	
  they	
  cause	
  a	
  la:ce	
  distor/on,	
  which	
  creates	
  a	
  poten/al	
  to	
  
“bind”	
  the	
  muon	
  in	
  place.
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Kubo Toyabe

For a Gaussian distribution of static local fields, the polarisation is:

1/3 tail reflects that 1/3 of the muon polarisation is, on average, parallel to the local 
field (see Youanc & De Routier’s book for more details)

Slow dynamics leads to the function 
being “relaxed”. One is able to 
measure muonium hopping rates 
(analogous to hydrogen hopping).

20 Chapter 3 • Depolarization models
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Figure 3.2: The magnetic field dependence of the longitudinal depolarization function
derived for a static isotropic Gaussian field distribution. The values of the magnetic field
are given in units of ∆/γµ

Here the second and third terms become vanishingly small for ∆/γµBext → 0. Figure
3.2 illustrates the field dependence of PG

z (t) for several values of Bext given in units of
∆/γµ. It clearly shows that the depolarization is almost canceled for Bext "Bloc. In
addition to the Gaussian distribution there are several other possible distributions. The
Lorentzian distribution is often used in dilute spin glass systems. The transverse geometry
is mainly used to investigate microscopic field distributions, distinguish different kinds of
muon adducts and to measure the local susceptibility. The latter experiment yields both
information on the symmetry and the hyperfine coupling at the muon site. If Bext is taken
sufficiently large compared to ∆/γµ, PX(t) will only probe the distribution along Bext.
This results in a dephasing of the muon spins, which with Eq. 3.3 gives:

PX(t) = exp

(

−∆2t2

2

)

cos(ωµt) (3.7)

Similar to the PZ(t), if ∆t is small, the envelope of PX(t) can be approximated with
the parabolic form (1 − ∆2t2/2). Here however, the initial depolarization is reduced
by half, since only the one component of the distribution along Bext participates in the
depolarization. As mentioned earlier, the depolarization in the transverse set-up as is
due to the dephasing of the muon spins by the local field distribution along Bext. The
characteristic damping rate of the oscillations is related to the typical time T2. If the
phase differences ∆θ exceed a few radians, the detector will no longer be able to pick up
a precessing signal. The spin system will be out of phase by 1 rad when:

∆θ = ∆ωT2 = 1 ⇒ 1

T2
= ∆ω (3.8)

where ∆ω=γµ

√

〈B2
Z〉. T2 is commonly used in NMR and is referred to as spin-spin relax-

ation. It discerns itself from another form of relaxation, known as spin-lattice relaxation

KT function has an LF-field dependence
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 However, they can be mobile, depending on temperature.... Of interest is how hydrogen diffuses 
so rapidly from one interstitial site to the next. 

Muon diffusion - how?

At high temperatures, muons move between sites via phonon-assisted hopping. 

Hopping rate proportional to T 1/2
exp

�Ea/kT

Spin-polarized muons in condensed matter physics S. J. Blundell 15

Figure 20: Diffusion process of a muon by phonon-
assisted tunnelling. (a) The muon is stable in an inter-
stitial site and the local distortion leads to self-trapping
so that its zero-point energy level lies a little lower than
the neighbouring site. (b) Thermal fluctuations provide
the opportunity for a coincidence configuration whereby
tunnelling is allowed, leading to (c) a new stable con-
figuration. (Adapted from Cox et al. 1987).

culiar effect is observed: the muon hop rate falls to a
minimum and then begins to rise again. In the very low
temperature regime the phonons appear to be hinder-
ing hopping rather than helping it, as they do at higher
temperatures. The reason is that at low temperatures
coherent tunnelling is possible i.e. the muon is in a band
state. Phonons now are responsible for inelastic scat-
tering which destroys the coherence of this delocalized
state. This coherent effect is known as quantum diffu-
sion (for a review, see Storchak and Prokof’ev 1998).

Experimental data for various materials are shown
in Figure 21 and although there are large differences
in the size of the hop rate and the detailed form of
the temperature dependence, all show an increasing
hop rate at high temperature consistent with activated
behaviour and a decreasing hop rate at low tempera-
ture consistent with quantum diffusion. An early the-
oretical treatment of this latter effect predicted that
the low temperature hop rate would follow an inverse
power law T−α, where the exponent α was large, typ-
ically ∼ 9 (Kagan and Klinger 1974). Experiments on
Cu and Al (see Figure 21) showed a more modest be-
haviour with α ∼0.6–0.7. However it was shown that
this could be explained by considering the effect of the
conduction electrons in a metal, which screen the muon
and cannot react fast enough to the diffusing particle
and follow it adiabatically. This produces a net drag
which reduces the particle hop rate and weakens the
temperature dependence. A detailed theory of this ef-
fect produces agreement with experiment (Kondo 1984,
Yamada 1984, Kagan and Prokof’ev 1986).

This dominant rôle of the electrons has been demon-
strated by ingenious experiments on aluminium (Karls-
son et al. 1995). In its superconducting state, the pres-

Figure 21: Muon hop rates as a function of tempera-
ture for various materials. Copper (Luke et al. 1991),
aluminium (Hartmann et al. 1988), gallium arsenide
(Kadono et al. 1990), potassium chloride (Kiefl et al.
1989), and solid nitrogen (Storchak et al. 1994).

ence of the gap in the electronic spectrum effectively
decouples the electron bath from the muon. At low
temperature the superconductivity can be removed by
applying a sufficiently large magnetic field to the sam-
ple. This dramatically reduces the muon diffusion rate
because the closing of the gap reconnects the muon dif-
fusion process to the electron bath, introducing drag.

In insulators there are no conduction electrons to
worry about and in this case the hopping particle is
a neutral muonium atom, not a charged muon. The
coherent muon hop rate for KCl (Figure 21) rises much
more rapidly with decreasing temperature than for met-
als, and fits to an exponent α = 3.3 (Kiefl et al. 1989).
This still does not quite fit with the earlier theory (Ka-
gan and Klinger 1974) but agrees with more sophis-
ticated treatments (see Storchak and Prokof’ev 1998)
which take into account the measured phonon spectrum
in KCl measured using neutron scattering.

In semiconductors muonium is also formed (see sec-
tion 5) and very similar temperature dependence is
found (Figure 21, Kadono et al. 1990) with α ∼ 3 be-
low 100 K but the hop rate saturates below ∼10 K due
to the presence of disorder. (Below this temperature
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Temperature dependent muon hopping
Spin-polarized muons in condensed matter physics S. J. Blundell 15

Figure 20: Diffusion process of a muon by phonon-
assisted tunnelling. (a) The muon is stable in an inter-
stitial site and the local distortion leads to self-trapping
so that its zero-point energy level lies a little lower than
the neighbouring site. (b) Thermal fluctuations provide
the opportunity for a coincidence configuration whereby
tunnelling is allowed, leading to (c) a new stable con-
figuration. (Adapted from Cox et al. 1987).

culiar effect is observed: the muon hop rate falls to a
minimum and then begins to rise again. In the very low
temperature regime the phonons appear to be hinder-
ing hopping rather than helping it, as they do at higher
temperatures. The reason is that at low temperatures
coherent tunnelling is possible i.e. the muon is in a band
state. Phonons now are responsible for inelastic scat-
tering which destroys the coherence of this delocalized
state. This coherent effect is known as quantum diffu-
sion (for a review, see Storchak and Prokof’ev 1998).

Experimental data for various materials are shown
in Figure 21 and although there are large differences
in the size of the hop rate and the detailed form of
the temperature dependence, all show an increasing
hop rate at high temperature consistent with activated
behaviour and a decreasing hop rate at low tempera-
ture consistent with quantum diffusion. An early the-
oretical treatment of this latter effect predicted that
the low temperature hop rate would follow an inverse
power law T−α, where the exponent α was large, typ-
ically ∼ 9 (Kagan and Klinger 1974). Experiments on
Cu and Al (see Figure 21) showed a more modest be-
haviour with α ∼0.6–0.7. However it was shown that
this could be explained by considering the effect of the
conduction electrons in a metal, which screen the muon
and cannot react fast enough to the diffusing particle
and follow it adiabatically. This produces a net drag
which reduces the particle hop rate and weakens the
temperature dependence. A detailed theory of this ef-
fect produces agreement with experiment (Kondo 1984,
Yamada 1984, Kagan and Prokof’ev 1986).

This dominant rôle of the electrons has been demon-
strated by ingenious experiments on aluminium (Karls-
son et al. 1995). In its superconducting state, the pres-

Figure 21: Muon hop rates as a function of tempera-
ture for various materials. Copper (Luke et al. 1991),
aluminium (Hartmann et al. 1988), gallium arsenide
(Kadono et al. 1990), potassium chloride (Kiefl et al.
1989), and solid nitrogen (Storchak et al. 1994).

ence of the gap in the electronic spectrum effectively
decouples the electron bath from the muon. At low
temperature the superconductivity can be removed by
applying a sufficiently large magnetic field to the sam-
ple. This dramatically reduces the muon diffusion rate
because the closing of the gap reconnects the muon dif-
fusion process to the electron bath, introducing drag.

In insulators there are no conduction electrons to
worry about and in this case the hopping particle is
a neutral muonium atom, not a charged muon. The
coherent muon hop rate for KCl (Figure 21) rises much
more rapidly with decreasing temperature than for met-
als, and fits to an exponent α = 3.3 (Kiefl et al. 1989).
This still does not quite fit with the earlier theory (Ka-
gan and Klinger 1974) but agrees with more sophis-
ticated treatments (see Storchak and Prokof’ev 1998)
which take into account the measured phonon spectrum
in KCl measured using neutron scattering.

In semiconductors muonium is also formed (see sec-
tion 5) and very similar temperature dependence is
found (Figure 21, Kadono et al. 1990) with α ∼ 3 be-
low 100 K but the hop rate saturates below ∼10 K due
to the presence of disorder. (Below this temperature

As sample is cooled, diffusion drops due to phonon-
assisted hopping. 

A minima is reached

Then diffusion rate increases, due to tunnelling between 
states.

S. Blundell, Contemp. Phys. (2001)
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So not going into the details.....
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Dynamic Kubo Toyabe

When the muon move, it averages over differences of the local field at different sites and a 
reduction of the linewidth is apparent (motional narrowing).

Equivalently, the lineshape goes over from Gaussian, when the muon is static in the lattice, to 
lorentzian, when the muon is diffusing rapidly.

This results in a dynamic Kubo-Toyabe function 
and must be numerically solved....

 

For a Gaussian distribution of static local fields, the polarisation is:

S. Cox, J. Phys. C: Solid State Phys. 20, 3187 (1987); Yaouanc & De Reotier textbook
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Figure 3.3: The fluctuation rate dependence of the zero-field depolarization function
derived for an isotropic Gaussian field distribution and a Markov dynamical process. The
values of the fluctuation rate are given in units of ∆.

In this equation νpZ(ti) exp(−νt) represents the product of the static Kubo-Toyabe with
the probability of collision within a time interval dt. The expression in general can not be
expressed analytically and needs to be solved numerically. Figure 3.3 shows numerically
calculated depolarization functions for several fluctuation rates ν, where ν is given in
units of ∆. For an increasing fluctuation rate, one observes a collapse of the tail, followed
by a reduced depolarization at short times. If ν/∆ is sufficiently large, an analytical
approximation of PZ(t) can be made via a Laplace transform [3]. This results in the
formula:

PZ(t) = exp

{

−2∆2

ν2
[exp(−νt) − 1 + νt]

}

(3.12)

This approximation is compared with the numerical solution in Fig 3.3 for ν/∆=3. In
the motional narrowing limit, PZ(t) simplifies to an exponential function:

PZ(t) = exp(−λZt) λZ = 2∆2/ν (3.13)

For a transverse set-up an analytical approximation can be made in a similar way:

PX(t) = exp

{

−∆2

ν2
[exp(−νt) − 1 + νt]

}

cos(ωµt) (3.14)

This formula is commonly referred to as ”Abragam formula”, although it was first derived
by Anderson (1954) as a model for the NMR Line shape [4]. It gives results very close
to the strong collision approximation and interpolates between the static and motional
narrowing limits. For the latter the envelope will give an exponential function

PX(t) = exp(−λXt) cos(ωµt) λX = ∆2/ν (3.15)
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Li diffusion in LixCoO2 
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FIG. 1: (Color online) ZF- and two LF-µ+SR spectra for
Li0.73CoO2 measured at (a) 100 K and (b) 225 K. The mag-
nitude of LF was 5 and 10 Oe. Solid lines represent the fit
result using Eq. (1).

by an electrochemical reaction using Li|LiPF6-ethylene
carbonate-diethyl carbonate|LiCoO2 cells. The LiCoO2

powder was pressed into a disc with 15 mm diameter
and 0.4 mm thickness, and the disc was then used as a
positive electrode. The LixCoO2 disk was removed from
the cell in a glove-box and packed into a sealed powder
cell just before the µ+SR measurement. Their structures
were subsequently confirmed by powder XRD, and, fi-
nally, their compositions were checked by an inductively
coupled plasma atomic emission spectral analysis. The
above procedure is essentially the same as that of our
previous µ+SR work on LixCoO2 [16] and LixNiO2 [17].

The µ+SR spectra were measured at the ARGUS sur-
face muon beam line of the RIKEN-RAL Muon Facility
at ISIS in the UK using a liquid-He flow type cryostat
in the T range between 10 and 400 K. The experimental
techniques were described elsewhere [18]. χ was mea-
sured using a SQUID magnetometer (MPMS, Quantum
Design) in the T range between 5 and 200 K under a
magnetic field of H = 100 Oe.

Figure 1 shows the zero field (ZF-) and longitudinal
field (LF-) µ+SR spectrum for the Li0.73CoO2 sample
obtained at 100 and 225 K. At 100 K, the ZF-spectrum
exhibits a typical Kubo-Toyabe (KT) behavior with a
minimum at t ∼ 6 µs, meaning that the implanted muons
see the internal magnetic field (Hint) due to the nuclear
magnetic moments of 7Li, 6Li and 59Co. The applied LF
clearly reduces the relaxation rate, i.e., the time slope, by
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FIG. 2: (Color online) For Li0.73CoO2 and Li0.53CoO2 re-
spectively, we show T dependences of (a, b) field distribution
width (∆), (c, d) field fluctuation rate (ν), (e, f) susceptibil-
ity (χ), and (g, h) the relationship between log(ν) and 1/T .
∆ and ν were obtained by fitting both ZF- and LF-spectra
using Eq. (1). χ was measured in both field cooling (FC) and
zero field cooling (ZFC) mode with H=100 Oe. In (e, f),
the χ data [16] measured in FC mode with H = 10 kOe for
Li0.75CoO2 and Li0.52CoO2 were also plotted for comparison.
The straight lines in (g) and (h) show the activated diffusive
behaviour discussed in the text.

decoupling Hint. Although the ZF-spectrum still shows
KT behavior at 225 K, the relaxation rate is smaller than
at 100 K.

In order to estimate the KT parameters precisely,
the ZF- and two LF-spectra were fitted simultaneously
by a combination of a dynamic Gaussian KT function
[GDGKT(∆, ν, t, HLF)] and an offset signal from the frac-
tion of muons stopped mainly in the sample holder, which
is made of high-purity aluminum;

A0 PLF(t) = AKTGDGKT(∆, ν, t, HLF) + ABG (1)

where A0 is the empirical maximum muon decay asym-
metry, AKT and ABG are the asymmetries associated
with the two signals. ∆ is the static width of the lo-
cal field distribution at the disordered sites, and ν is
the field fluctuation rate. When ν = 0 and HLF = 0,

2

0.2

0.1

0

A
0
P

(t
)

LF=10 Oe
LF=5 Oe
ZF

0.2

0.1

0

A
0
P

(t
)

151050
TIME (µs)

LF=10 Oe
LF=5 Oe
ZF

Li0.73CoO2 at 100 K

Li0.73CoO2 at 225 K

(a)

(b)

FIG. 1: (Color online) ZF- and two LF-µ+SR spectra for
Li0.73CoO2 measured at (a) 100 K and (b) 225 K. The mag-
nitude of LF was 5 and 10 Oe. Solid lines represent the fit
result using Eq. (1).

by an electrochemical reaction using Li|LiPF6-ethylene
carbonate-diethyl carbonate|LiCoO2 cells. The LiCoO2

powder was pressed into a disc with 15 mm diameter
and 0.4 mm thickness, and the disc was then used as a
positive electrode. The LixCoO2 disk was removed from
the cell in a glove-box and packed into a sealed powder
cell just before the µ+SR measurement. Their structures
were subsequently confirmed by powder XRD, and, fi-
nally, their compositions were checked by an inductively
coupled plasma atomic emission spectral analysis. The
above procedure is essentially the same as that of our
previous µ+SR work on LixCoO2 [16] and LixNiO2 [17].

The µ+SR spectra were measured at the ARGUS sur-
face muon beam line of the RIKEN-RAL Muon Facility
at ISIS in the UK using a liquid-He flow type cryostat
in the T range between 10 and 400 K. The experimental
techniques were described elsewhere [18]. χ was mea-
sured using a SQUID magnetometer (MPMS, Quantum
Design) in the T range between 5 and 200 K under a
magnetic field of H = 100 Oe.

Figure 1 shows the zero field (ZF-) and longitudinal
field (LF-) µ+SR spectrum for the Li0.73CoO2 sample
obtained at 100 and 225 K. At 100 K, the ZF-spectrum
exhibits a typical Kubo-Toyabe (KT) behavior with a
minimum at t ∼ 6 µs, meaning that the implanted muons
see the internal magnetic field (Hint) due to the nuclear
magnetic moments of 7Li, 6Li and 59Co. The applied LF
clearly reduces the relaxation rate, i.e., the time slope, by
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ity (χ), and (g, h) the relationship between log(ν) and 1/T .
∆ and ν were obtained by fitting both ZF- and LF-spectra
using Eq. (1). χ was measured in both field cooling (FC) and
zero field cooling (ZFC) mode with H=100 Oe. In (e, f),
the χ data [16] measured in FC mode with H = 10 kOe for
Li0.75CoO2 and Li0.52CoO2 were also plotted for comparison.
The straight lines in (g) and (h) show the activated diffusive
behaviour discussed in the text.

decoupling Hint. Although the ZF-spectrum still shows
KT behavior at 225 K, the relaxation rate is smaller than
at 100 K.

In order to estimate the KT parameters precisely,
the ZF- and two LF-spectra were fitted simultaneously
by a combination of a dynamic Gaussian KT function
[GDGKT(∆, ν, t, HLF)] and an offset signal from the frac-
tion of muons stopped mainly in the sample holder, which
is made of high-purity aluminum;

A0 PLF(t) = AKTGDGKT(∆, ν, t, HLF) + ABG (1)

where A0 is the empirical maximum muon decay asym-
metry, AKT and ABG are the asymmetries associated
with the two signals. ∆ is the static width of the lo-
cal field distribution at the disordered sites, and ν is
the field fluctuation rate. When ν = 0 and HLF = 0,

2

0.2

0.1

0

A
0
P

(t
)

LF=10 Oe
LF=5 Oe
ZF

0.2

0.1

0

A
0
P

(t
)

151050
TIME (µs)

LF=10 Oe
LF=5 Oe
ZF

Li0.73CoO2 at 100 K

Li0.73CoO2 at 225 K

(a)

(b)

FIG. 1: (Color online) ZF- and two LF-µ+SR spectra for
Li0.73CoO2 measured at (a) 100 K and (b) 225 K. The mag-
nitude of LF was 5 and 10 Oe. Solid lines represent the fit
result using Eq. (1).

by an electrochemical reaction using Li|LiPF6-ethylene
carbonate-diethyl carbonate|LiCoO2 cells. The LiCoO2

powder was pressed into a disc with 15 mm diameter
and 0.4 mm thickness, and the disc was then used as a
positive electrode. The LixCoO2 disk was removed from
the cell in a glove-box and packed into a sealed powder
cell just before the µ+SR measurement. Their structures
were subsequently confirmed by powder XRD, and, fi-
nally, their compositions were checked by an inductively
coupled plasma atomic emission spectral analysis. The
above procedure is essentially the same as that of our
previous µ+SR work on LixCoO2 [16] and LixNiO2 [17].

The µ+SR spectra were measured at the ARGUS sur-
face muon beam line of the RIKEN-RAL Muon Facility
at ISIS in the UK using a liquid-He flow type cryostat
in the T range between 10 and 400 K. The experimental
techniques were described elsewhere [18]. χ was mea-
sured using a SQUID magnetometer (MPMS, Quantum
Design) in the T range between 5 and 200 K under a
magnetic field of H = 100 Oe.

Figure 1 shows the zero field (ZF-) and longitudinal
field (LF-) µ+SR spectrum for the Li0.73CoO2 sample
obtained at 100 and 225 K. At 100 K, the ZF-spectrum
exhibits a typical Kubo-Toyabe (KT) behavior with a
minimum at t ∼ 6 µs, meaning that the implanted muons
see the internal magnetic field (Hint) due to the nuclear
magnetic moments of 7Li, 6Li and 59Co. The applied LF
clearly reduces the relaxation rate, i.e., the time slope, by
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behaviour discussed in the text.

decoupling Hint. Although the ZF-spectrum still shows
KT behavior at 225 K, the relaxation rate is smaller than
at 100 K.

In order to estimate the KT parameters precisely,
the ZF- and two LF-spectra were fitted simultaneously
by a combination of a dynamic Gaussian KT function
[GDGKT(∆, ν, t, HLF)] and an offset signal from the frac-
tion of muons stopped mainly in the sample holder, which
is made of high-purity aluminum;

A0 PLF(t) = AKTGDGKT(∆, ν, t, HLF) + ABG (1)

where A0 is the empirical maximum muon decay asym-
metry, AKT and ABG are the asymmetries associated
with the two signals. ∆ is the static width of the lo-
cal field distribution at the disordered sites, and ν is
the field fluctuation rate. When ν = 0 and HLF = 0,

Fit to a dynamic Gaussian KT function

4

FIG. 4: (Color online) (a) Possible jump paths for Li ions.
Broken arrows represent the direct jump to nearest (vacant)
Li site (path No. 1), whereas solid arrows the jump to an
interstitial site in the center of the oxygen tetrahedron (path
No. 2). (b) The relationship between DLi and x in LixCoO2

as extracted from our µ+SR experiment (open circles). Solid
and dashed lines represent the predictions by first-principles
calculations [5] at T = 300 and 400 K, respectively, when
the effective vibration frequency is a typical value (1013 s−1).
Sharp minima in the predicted curve (at x = 1/3 and 1/2)
are caused by Li-ordering. The 7Li-NMR result [4, 19] for
T = 400 K is also plotted (solid dot) for comparison.

duction of ∆ by the electric field gradient effect on the
nuclear moments with I ≥ 1 [22, 23]. This suggests that
the point-charge model is acceptable for determining the
muon site(s) in LixCoO2. As a result, it is clarified that,
as T increases from 5 K, the Li+ ions start to diffuse
above 150 K (= T Li

d ) and then the µ+ diffuse above
300 K (= T µ

d ), in spite of the mass difference between
µ+ and Li+ (mLi+/mµ+ ∼ 63) because the muons form
a hydrogen-like bond with oxygen.

Finally, we estimate DLi using the obtained fluctuation
rate ν as directly measuring the jump rate. Figure 4(a)
shows the possible jump paths for the Li ions. That

is, the direct jump to the nearest (vacant) Li site (path
No. 1) and the jump to the interstitial site in the center
of the oxygen tetrahedron (path No. 2). Assuming that
ν corresponds to the jump rate of the Li ions between
the neighboring sites, DLi is given by [24];

DLi =
n∑

i=1

1

Ni
Zv,is

2
i ν, (2)

where Ni is the number of Li sites in the i-th path, Zv,i is
the vacancy fraction, and si is the jump distance. Here,
we naturally restrict the path to lie in the c-plane, i.e.,
along the 2D channel, because it is most unlikely that
the Li ions jump across the CoO2 plane to an adjacent
Li plane. Therefore, N1 = 6, N2 = 3, s1 is equivalent to
the a-axis length, s2 = a/

√
3, Zv,1 = 0.27 for Li0.73CoO2

(0.47 for Li0.53CoO2), and Zv,2 = 1. As a result, we ob-
tain DLi = (7±2)×10−10 cm2/s [(2.5±0.8)×10−10 cm2/s]
for Li0.73CoO2 [Li0.53CoO2] at 300 K. Here, ν(300 K) for
Li0.73CoO2 was estimated from the extrapolation of the
linear relationship between log[ν] and T−1 [see Fig. 2(g)].
The estimated DLi is found to be very consistent with
the prediction by first-principle calculations [5], as seen
in Fig. 4(b). Note that the jump paths used in Eq. (2)
are the same to those for the first-principle calculations.
This means that there is no ambiguous factor for estimat-
ing DLi by µ+SR. Since µ+SR detects ν ranging from
∼ 0.01∆ to ∼ 10∆, it is applicable for materials with
DLi = 10−12 − 10−9 cm2/s, when N = 10, Zv = 1,
s = 1 nm, and ∆ = 0.1 × 106 s−1.

In conclusion, we have been able to determine the Li
diffusion coefficient, DLi, of LixCoO2 from the fluctuation
rate of the field experienced by the muons in interaction
with the nuclear moments of the diffusing ions. The value
was found to be in good agreement with theoretical pre-
dictions. Consequently, we would like to suggest µ+SR
as a novel probe to investigate Li diffusion, especially for
materials containing transition metal ions.
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Sharp minima in the predicted curve (at x = 1/3 and 1/2)
are caused by Li-ordering. The 7Li-NMR result [4, 19] for
T = 400 K is also plotted (solid dot) for comparison.

duction of ∆ by the electric field gradient effect on the
nuclear moments with I ≥ 1 [22, 23]. This suggests that
the point-charge model is acceptable for determining the
muon site(s) in LixCoO2. As a result, it is clarified that,
as T increases from 5 K, the Li+ ions start to diffuse
above 150 K (= T Li

d ) and then the µ+ diffuse above
300 K (= T µ

d ), in spite of the mass difference between
µ+ and Li+ (mLi+/mµ+ ∼ 63) because the muons form
a hydrogen-like bond with oxygen.

Finally, we estimate DLi using the obtained fluctuation
rate ν as directly measuring the jump rate. Figure 4(a)
shows the possible jump paths for the Li ions. That

is, the direct jump to the nearest (vacant) Li site (path
No. 1) and the jump to the interstitial site in the center
of the oxygen tetrahedron (path No. 2). Assuming that
ν corresponds to the jump rate of the Li ions between
the neighboring sites, DLi is given by [24];

DLi =
n∑

i=1

1

Ni
Zv,is

2
i ν, (2)

where Ni is the number of Li sites in the i-th path, Zv,i is
the vacancy fraction, and si is the jump distance. Here,
we naturally restrict the path to lie in the c-plane, i.e.,
along the 2D channel, because it is most unlikely that
the Li ions jump across the CoO2 plane to an adjacent
Li plane. Therefore, N1 = 6, N2 = 3, s1 is equivalent to
the a-axis length, s2 = a/

√
3, Zv,1 = 0.27 for Li0.73CoO2

(0.47 for Li0.53CoO2), and Zv,2 = 1. As a result, we ob-
tain DLi = (7±2)×10−10 cm2/s [(2.5±0.8)×10−10 cm2/s]
for Li0.73CoO2 [Li0.53CoO2] at 300 K. Here, ν(300 K) for
Li0.73CoO2 was estimated from the extrapolation of the
linear relationship between log[ν] and T−1 [see Fig. 2(g)].
The estimated DLi is found to be very consistent with
the prediction by first-principle calculations [5], as seen
in Fig. 4(b). Note that the jump paths used in Eq. (2)
are the same to those for the first-principle calculations.
This means that there is no ambiguous factor for estimat-
ing DLi by µ+SR. Since µ+SR detects ν ranging from
∼ 0.01∆ to ∼ 10∆, it is applicable for materials with
DLi = 10−12 − 10−9 cm2/s, when N = 10, Zv = 1,
s = 1 nm, and ∆ = 0.1 × 106 s−1.

In conclusion, we have been able to determine the Li
diffusion coefficient, DLi, of LixCoO2 from the fluctuation
rate of the field experienced by the muons in interaction
with the nuclear moments of the diffusing ions. The value
was found to be in good agreement with theoretical pre-
dictions. Consequently, we would like to suggest µ+SR
as a novel probe to investigate Li diffusion, especially for
materials containing transition metal ions.
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