Complementary Techniques
NMR, ESR and μSR

Dr N J Clayden
School of Chemistry
University of East Anglia
Caveat

All depends on the actual chemical system under investigation
Starting point

- Muon is an extrinsic probe implanted into a material
- Magnetic properties like ^1H and e^{-1}, all $S=1/2$

- Muon implants as a diamagnetic muon think NMR
- Muon implants as muonium, or reacts to give a muoniated radical think ESR (spin label)
Diamagnetic muons and NMR Structure

Unlike NMR, muons are NOT a structural tool

- Cannot guide where the muon implants
- Difficulty assigning the implantation site without assuming a structure
- Short lifetime precludes any “chemical shift” information
- Exception, the Knight shift in a metal, information on the electronic structure
Diamagnetic muons and NMR Dynamics

- Both NMR and muons can be used to study dynamic processes
- Timescales for both depend on parameter being observed
 - NMR: Population, chemical shift, J, T_1 and T_2
 - μSR: T_1 and T_2
- Averaging of dipolar interactions by the motion of the spin
 - Nuclear-nuclear dipole for NMR
 - Muon-nuclear dipole for μSR
- Similar range of rates accessible ($\gamma_\mu \sim 3.184\gamma_H$)
Short muon lifetime 2.2 µs

Slow chemical reactions

Conformational exchange

Spin-lattice relaxation

Lineshape perturbations

Molecular tumbling and Diffusion

Population exchange

Averaging of NMR parameters by vibrations and rotations

Time window

(Magnitude of dependent interaction)^{-1}
Case study
Li$^+$ diffusion in Li-ion battery anodes

Use the muon response as an indirect measurement of Li$^+$ diffusion

<table>
<thead>
<tr>
<th>Method</th>
<th>D_{Li} (cm2 s$^{-1}$)</th>
<th>D_{Li} (cm2 s$^{-1}$)</th>
<th>E_a (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ^+SR (at 310 K)</td>
<td>$7.6(3) \times 10^{-11}$</td>
<td>—</td>
<td>270(5)</td>
</tr>
<tr>
<td>Li-NMR11 (at 314 K)</td>
<td>3.8×10^{-11}</td>
<td>—</td>
<td>550</td>
</tr>
<tr>
<td>Li-NMR44 (at 373 K)</td>
<td>10^{-8}</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Electrochemical impedance38 (at 298 K)</td>
<td>10^{-9} - 10^{-7}</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>First principles calculations42 (at 300 K)</td>
<td>0.9×10^{-11}</td>
<td>—</td>
<td>283</td>
</tr>
<tr>
<td>First principles calculations45 (at 300 K)</td>
<td>—</td>
<td>$1-10 \times 10^{-11}$</td>
<td>510</td>
</tr>
</tbody>
</table>

Case study
Li$^+$ diffusion in Li-ion battery anodes
Motional narrowing from 7Li NMR spectrum

NB Instrument used not optimal, too long pulse lengths 6-9 µs for $\pi/2$

7Li NMR relaxation times T_1, T_{1p} and T_2

J Langer et al
PHYSICAL REVIEW B 88, 094304 (2013)
Diamagnetic muons and NMR Reactions

- NMR extremely versatile
- μSR very limited
 - Movement from one trapped site to another is diffusion
 - Delayed formation of muonium
- Show as an “excess” relaxation rate
Muoniated radicals and ESR Structure

- Muoniated radicals are formed when muonium adds to a double bond
- ESR a probe for the local environment - spin labels
 - Solvation in membranes
 - Distance probes - separation between two labels
- (ESR can be used to study structure with unpaired electrons in general)
- μSR only used as a probe for the local environment
- Hyperfine couplings constants depend on the polarity of the medium
Muons or ESR spin labels

Muons
- Target molecule itself might be muoniated
- Insensitive
- Simple system (or complex without other muon targets)

ESR
- Structure compromised by having spin label added
- Sensitive
- Complex systems
Resonant fields reflect differences in the hyperfine coupling constants A_H

Typically > 100 MHz

E. Roduner et al
Hyperfine coupling between the electron and 14N nuclear spin

~ 1540 MHz

Smaller than μSR
$1 \text{mT} = 10 \text{ G}$

Strength of reaction field from the solvent

D. Marsh, C. Toniolo
Muoniated radicals and ESR Dynamics

- Both ESR and μSR can be used to study dynamics
- ESR requires a spin label - nitrooxide ions
- Both rely on averaging of hyperfine coupling constants
- Similar time window
Complex analysis of conformers for a 72R2 mutant of T4L with torsional oscillations and conformational jumps

Alberta Ferrarini et al

2-phenyl ethanol in 35% wt $C_{12}E_4$

Probe is the molecule partitioning
General comparison

NMR
- **Target**
 - Intrinsic NMR active nucleus e.g. 13C
- **Detection**
 - Induced voltage in a coil
- **Phase**
 - Solid, liquid, rarely gas
- **Sensitivity**
 - Depends on nucleus but < 10 mg

µSR
- **Target**
 - Implanted muon, muonium or muoniated radical,
- **Detection**
 - Positron decay product, scintillator/PMT
- **Phase**
 - Solid, liquid, gas
- **Sensitivity**
 - Typically 1-2 g