Candidate Muon Stopping Sites in NaFe_{1-x}Ni_xAs and Quantum effects within an anharmonic approximation

Onuorah Ifeanyi John, Pietro Bonfà, Roberto De Renzi

13th December, 2017

OUTLINE:

I

• NaFe_{1-x}Ni_xAs (x=0 and 0.5): μ SR results, side by side with DFT + local field calculations for muon sites

П

• Muon Quantum Effects in B_c of (Fe, Ni, Co) : An approach to include anharmonicity effects in a harmonic muon potential.

NaFe_{1-x}Ni_xAs: Coexistence of magnetism and superconductivity

- Fe-pnictides, with Fe-atoms ordered antiferromagnetically
- x= 0% < 0.4%, transition to ~ homogeneous long range magnetically ordered state
- For x=0.4% magnetism is inhomogeneous
- x =1.5% magnetism is completely suppressed

Above measurements by colleagues at Columbia University

NaFe_{1-x}Ni_xAs: ZF-μSR and muon precession frequencies

Evolution of magnetic fraction with T-x

- x =1.5% magnetism is completely suppressed
- Full sample volume is superconducting for x=0.4 %
- Two high precession frequencies and one low frequency

Above measurements by colleagues at Columbia University

NaFe_{1-x}Ni_xAs: Starting positions for site search with DFT

uniform 4 x 4 x 4 muon grid

84 site positions --> 10 symmetrically inequivalent positions.

NaFe_{1-x}Ni_xAs: Starting positions for search with DFT

10 symmetrically Inequivalent positions.

NaFe_{1-x}Ni_xAs: Starting positions for site search with DFT

+ 2 positions of unperturbed electrostatic potential minima

NaFe_{1-x}Ni_xAs: Candidate muon sites

 Total energy and Forces between atoms are converged to a threshold of 1e-4 with DFT within the 2x2x2 supercell

	Label	Symm	Site Positions	ΔE (meV)
Cluster I	Α	8n	(0.41, 0.25, 0 .10)	0
	В	8m	(0.50, 0.12, 0.10)	42
	С	81	(0.25, 0.01, 0.25)	183
Cluster II	D	4b	(0.75, 0.50, 0.50)	287
	Е	4g	(0.50, 0.25, 0.60)	436

- Clusters grouped considering DFT energy and simulated frequencies
- \bullet Calculations for NaFe_{0.5}Ni_{0.5}AS results in similar candidate muon sites

NaFe_{1-x}Ni_xAs: Candidate sites: Cluster II

Plot V(0,0,z) Toy model potential

•
$$V(x,y,z)= 1/2a(x^2+y^2)+1/2(bz^4-cz^2+dz)+f$$

With constants, a=2.44 x 10^{-3} b=5.04 x 10^{-4} , c= 3 x 10^{-3} , d=2.85 x 10^{-3} , f= 4.79 x 10^{-3} all in Hartree units.

- Suggests delocalization of the muon over sites D and E.
- 3 sites--> B, A and < D and E>. For C highly unstable.

NaFe_{1-x}Ni_xAs: Local fields at the muon

Dipolar sum at the muon:

$$B_{dipole}(r_{\mu}) = \sum_{i} \left[\frac{\mu(r_{i})}{(|r_{i} - r_{\mu}|)^{3}} - \frac{3(r_{i} - r_{\mu})(\mu(r_{i}).(r_{i} - r_{\mu}))}{(|r_{i} - r_{\mu}|)^{5}} \right]$$

• Estimated Fe magnetic moment with site B, approx. 0.175 μ_B . Comparable to 0.17 μ_B of neutron scattering and 0.15 μ_B of Mössbauer.

Quantum Effects of the muon: Contact hyperfine field

• DFT within Born-Oppenheimer approx. does not treat electrons and the nuclei on same footing. Light mass of the muon not considered.

• To a first approximation the muon potential is treated with a harmonic potential, but the muon potential is not harmonic.

Include anharmonicity in the description of the muon potential

Quantum Effects of the muon: Anharmonicity within a self - consistent Harmonic approximation (SCHA)

Summary of the approach:

Quantum Effects of the muon: 'Effective' harmonic approximation

Frequency evolution during free energy minimization (μ - Fe-bcc)

• Because of difficulty in parameterizing the anharmonicity, till now we still have a harmonic potential but with an effective frequency, $\omega_{\text{effective}}$

Quantum Effects of the muon: Contact hyperfine field

	E _o (eV)		
	Harmonic	Anharmonic	
Fe(bcc)	0.72	0.77	
Co(hcp)	0.53	0.68	
Co(fcc)	0.49	0.64	
Ni(fcc)	0.44	0.62	

$$\langle B_c \rangle = \int |\psi(\mathbf{r})|^2 B_c(\mathbf{r}) dr$$

I. J. Onuorah et al, PRB 97, 174414 (2018)

