# ISIS muon spectroscopy training school 2018: applications to magnetism



Various animals attempting to follow a scaling law.

#### The many faces of magnetism



How do we understand the occurrence of magnetic order?



Lev Landau (1908-1968)



Philip Anderson (1923- )

#### Broken symmetry is a cornerstone of CMP

Consider a magnet

 $T > T_{c}$ (a)  $\uparrow$   $\uparrow$   $\downarrow$   $\uparrow$   $\uparrow$  (b)  $\downarrow$   $\downarrow$   $\uparrow$   $\downarrow$   $\uparrow$   $\uparrow$   $\uparrow$   $\downarrow$   $\uparrow$   $\uparrow$   $\uparrow$   $\downarrow$   $\uparrow$   $\downarrow$   $\uparrow$   $\downarrow$   $\uparrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\uparrow$   $\uparrow$   $\downarrow$   $\uparrow$   $\downarrow$   $\uparrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\uparrow$   $\downarrow$   $\uparrow$   $\downarrow$   $\uparrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\uparrow$   $\downarrow$   $\uparrow$   $\downarrow$   $\uparrow$  $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\uparrow$   $\downarrow$   $\downarrow$   $\uparrow$ 

These magnets are the same

#### Broken symmetry is a cornerstone of CMP

Consider a magnet

These magnets are different

This has a simple mathematical description



Mathematical singularity at  $T_c$  prevents you following the properties

# The 4-fold way of broken symmetry

• Phase transitions

## Mathematical singularity at $T_{\rm c}$

• Rigidity

### order transmits forces

• New excitations

New particle spectrum

• Defects

Walls that separate different order in different places

# The magnet

• Order parameter *M* 



• Rigidity: permanent magnetism

• Excitations: magnon particles

• Defects: domain walls





# The muon

## Critical phenomena in magnetism



S.J. Blundell Magnetism in Condensed Matter

## Muons as a probe of magnetism

- Microscopic: sensitive to local effects
- Sensitive to very weak magnetism
- Work well in zero applied field
- One muon at a time  $\rightarrow$  ultra dilute!



3.5

3.0

4.5

4.0

•  $\mu^+$ SR is great for: small moment magnetism random magnetism 2.5short range effects 2.0 20(zHW)  $^{\eta}_{\Lambda}$  1.0 15 A(t) (%) 0 0.35 K 0.5 5 5.02 K 0.00 0.5 2 0 3  $T(\mathbf{K})$  $t (\mu s)$ 

# Uniformly weakly magnetic Non-magnetic, with strongly magnetic impurities



<u>Susceptibility</u> gives **average** information and therefore can give the same response for the situations sketched above

 $\mu$ SR gives **local** information and therefore can distinguish between these two situations.

## Particle properties



## Muon spin relaxation



muons

cryostat

quadrupole magnet

Helmholtz magnet

> photomultiplier tubes















### Typical spectra for polycrystalline samples



### Typical spectra for polycrystalline samples



More on relaxation functions  $A(t) \sim \sum A_i \cos(\gamma_\mu |B_i|t)$ i † muon sites field at site In general  $A(t) \sim \int p(B) \cos(\gamma_{\mu} B t) dB$ 

Usually we only have one or two muon sites but we need to take account of broadening/dynamics

$$A(t) = \frac{1}{3} \exp(-\lambda_{\parallel} t) + \frac{2}{3} \exp(-\lambda_{\perp} t) \cos(\gamma_{\mu} B t)$$

$$\uparrow$$

$$1/T_{1}$$

$$1/T_{2}$$

## EuO is THE localized ferromagnet



FFT amplitude

100

 $\begin{array}{c} 0.2 \\ \text{Field} \\ 0.1 \end{array}$ 

0.0

 $\stackrel{0.2}{\underset{0.1 \text{ L}}{\text{(L)}}}$ 

0.0

100

S.J. Blundell et al. PRB 81, 092407 (2010)

#### Antiferromagnets.

MSR works just as well with AFMs : probes LOCAL fields



good spin precession signal (corresponds to 1.14 T at OK, in ~ agreement with S = 5/2dipolar field and hyperfine field).

Venura et al Hyp. Int. 17, 339 (1984)

## Case study One dimensional molecular magnets



## Models of low dimensional magnetism

|       | D=1, Ising | D=2, $XY$ | D = 3, Heisenberg |
|-------|------------|-----------|-------------------|
| d = 1 | no order   | no order  | no order          |
| d = 2 | order      | no order  | no order          |
| d = 3 | order      | order     | order             |



D = Dimension of the spins d = dimension of the lattice

Coleman-Mermin-Wagner theorem forbids breaking a continuous symmetry for d=1 and 2 for T > 0

We can describe the physics with a deceptively simple looking equation

$$H = \sum_{ij} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

Anderson Basic notions in Condensed Matter Physics

## $Cu(NO_3)_2(pyz)$



## Magnetism in 1 dimension

 $S{=}1/2\ \text{Cu}^{2+}$  ions linked by pyz

1D Cu-(pyz)-Cu chains along a

A Santoro *et al.*, Acta. Cryst., **95** 5780 (1973) P R Hammar *et al.*, Phys. Rev. B, **59** 1008 (1999)

 $Cu(NO_3)_2(pyz)$ 



## Magnetism in 1 dimension

 $S{=}1/2\ \text{Cu}^{2+}$  ions linked by pyz

1D Cu-(pyz)-Cu chains along a

High field magnetization and specific heat give  $|J|/k_{\rm B}$ =10.3 K

No evidence of magnetic order down to 70 mK

A Santoro *et al.*, Acta. Cryst., **95** 5780 (1973) P R Hammar *et al.*, Phys. Rev. B, **59** 1008 (1999)

## Molecular magnets: muons are unique!

Observation of magnetic order - invisible to other techniques



Order observed in CuPzN with  $T_{\rm N}$ =107 mK J'/J=4.4 ×10<sup>-3</sup>

Lancaster et al. Phys. Rev. B, 73 020410(R) (2006)

# $Cu(NO_3)_2(pyz)$ $\mu^+SR$ results



## The problem with finding $T_N$ in low-d systems



Stochastic series QMC simulations say

The anomaly in  $C_v$  decreases with decreasing  $\alpha$ 

This is due to correlations above  $T_N$ ( $\Delta S$  at  $T_N$  is therefore reduced)

Other measurements made difficult by the small magnetic moment in anisotropic systems

P Sengupta et al. Phys Rev B 68 94423 (2003)

#### The most beautiful magnetic spectrum ever recorded?










#### AgNiO<sub>2</sub>: a new charge ordered state of matter?









Orbital degeneracy lifted via a charge ordering mechanism This gives rise to a well defined magnetic structure Muons see this, but show an

anomalous *T* dependence

Lancaster et al., PRL 100 017206 (2008)

# What on earth are we measuring?



#### Local magnetic field at the muon site

 $*B_{1} = \frac{\mu_{0}M}{3}$ LORENTZ FIELD site independent Zero for antiferromagnets \* Bdip (Im) DIPOLAR FIELD depends on muon site depends on direction of M \* Bhf (Im) HYPERFINE FIELD due to electron spin density at muon site \* Bdemag DEMAGNETIZATION depends on sample shape or FIELD domain structure

 $B_{dip}(\underline{r}) = \underbrace{\mu_{o}}_{4\pi} \sum_{i} \frac{1}{r_{i}^{3}} \begin{bmatrix} 3(\underline{m_{i}} \cdot \underline{r_{i}}) \underline{r_{i}} \\ -\frac{1}{r_{i}^{2}} \end{bmatrix}$ 

 $B_{dip}(\underline{r}) = \underbrace{\mu_{o}}_{4\pi} \sum_{i} \frac{1}{r_{i}^{3}} \left[ \frac{3(\underline{m_{i}} \cdot \underline{r_{i}})\underline{r_{i}}}{r_{i}^{2}} - \underline{m_{i}} \right]$ 



 $B_{dip}(\underline{r}) = \underbrace{\mu_{o}}_{4\pi} \sum_{i} \frac{1}{r_{i}^{3}} \left[ \frac{3(\underline{m_{i}} \cdot \underline{r_{i}})\underline{r_{i}}}{r_{i}^{2}} - \underline{m_{i}} \right]$ 





#### Dynamics in magnetic systems

- Random fluctuations
- Elementary excitations
- Diffusive modes
- Hydrodynamics

We measure correlations in the local magnetic fields  $\langle B(t)B(0)\rangle$ 



# The muon as a probe of dynamics



$$\dot{n}_{\uparrow} = -W_{21}n_{\uparrow} + W_{12}n_{\downarrow}$$
$$\dot{n}_{\downarrow} = W_{21}n_{\uparrow} - W_{12}n_{\downarrow}$$
$$\delta P(t) \propto \exp(-(W_{21} + W_{12})t) = \exp(-\lambda t)$$

ĺ

Muon-spin relaxation

$$P_{z}(t) = P_{z}(0) e^{-\Gamma t}$$

$$Nuon$$

$$P_{z}(t) = P_{z}(0) e^{-\Gamma t}$$

$$Relaxation$$

$$Relaxation$$

$$rate$$

$$\Gamma = \int_{0}^{\infty} \chi_{\mu}^{2} \langle B_{\perp}(t) B_{\perp}(0) \rangle \cos \omega_{L} t dt$$

$$T$$
Field-field correlation
$$T$$
function
$$T$$
longitudinal
field

$$1 \mathcal{G} \langle B_{1}(t) B_{1}(0) \rangle = \langle B_{1}^{2} \rangle e^{-\omega t}$$
  

$$\Rightarrow \Gamma = \frac{2\Delta^{2} \nu}{\nu^{2} + \omega_{L}^{2}}$$
  

$$\omega_{L} = 0 \qquad \Gamma = 2\Delta^{2}/\nu$$
  

$$\omega_{L} \neq 0 \qquad \Gamma \Rightarrow 0 \qquad \text{as} \qquad \omega_{L} \Rightarrow \infty$$

Systems with energy gaps



# Spin Peierls: another fate for 1D spin systems





# **Isolated dimers**



Dimers have an *S*=0 ground state (no magnetization) and a gap to the first excited magnetic state.



# Spin Peierls: another fate for 1D spin systems



#### MEM(TCNQ)<sub>2</sub>

S.J. Blundell et al., JPCM 9 L119 (1997)

Quantum magnetism and dimers [Cu(gly)(pyz)](ClO<sub>4</sub>)



arXiv:1311.761

 $[Cu(gly)(pyz)](ClO_4)$ 

Bleaney-Bowers Susceptibility: *J*=7.5 K



 $[Cu(gly)(pyz)](ClO_4)$ 

Bleaney-Bowers Susceptibility: *J*=7.5 K



No order in ZF down to 30 mK

# **Isolated dimers**



# Weakly coupled dimers



In an idealized case we expect a quantum phase transition to XY magnetic order

# Weakly coupled dimers



In an idealized case we expect a quantum phase transition to XY magnetic order

 $[Cu(gly)(pyz)](ClO_4)$ 

Bleaney-Bowers Susceptibility: *J*=7.5 K



Two set of transitions in applied field

[Cu(gly)(pyz)](ClO<sub>4</sub>)



Suggests J = 7.3 K and J' = 3.3 K



### Conclusions

- Muons are a sensitive probe of magnetism
- Useful for static and dynamic effects
- Work well at low temperatures



 Examples include: low-dimensional magnetism incommensurate structures dynamics





#### You can find out more about magnetism in many books

Including:



... just one more thing:



#### Case study: Dynamics in molecular nanomagnets



#### Single molecule magnets

Magnetic ion clusters which couple to give large S with negative anisotropy

 $\hat{H}_e = -D\hat{S}_z^2 + g\mu_{\rm B}\hat{\mathbf{S}}\cdot\mathbf{B}$ 



# $\mu^+$ SR results have been ambiguous...

...but similar results seen in all cases



What does it all mean?

Lancaster et al. JPCM 16, S4563 (2004)



# Amit Keren's suggestion



Keren et al. PRL 98 257204 (2007)



# Amit Keren's suggestion

Proton fluctuations determine the muon response



Keren et al. PRL 98 257204 (2007)



# Amit Keren's suggestion

Proton fluctuations determine the muon response



but electron spins are being relaxed

$$rac{1}{ au_{
m e}} \Box \langle B_{
m n}^2 
angle au_n$$

Keren et al. PRL 98 257204 (2007)

#### Step 1: show that electronic spins relax the muon spins Make measurements on S=0 and S=1 materials



Prediction: significantly more relaxation from S=1 material

Lancaster et al., PRB 81, 140409(R)
#### The effect of electronic moments



Conclusion: electronic moments on the MNMs relax the muon spins

Lancaster *et al.* PRB **81**, 140409(R) (2010)

#### Step 2: show that nuclear spins relax the electronic spins Make measurements on protonated and deuterated materials



Prediction



 $Cr_7Mn S=1$ 

proton has  $\mu$ =2.8  $\mu_{\rm N}$  deuteron has  $\mu$ =0.857  $\mu_{\rm N}$ 

Prediction: more relaxation from deuterated material

Lancaster *et al.*, PRB **81**, 140409(R)

#### The effect of nuclear moments



If we have

$$\begin{array}{ll} \langle B_n^2 \rangle & \Box & \gamma_{\mu}^2 I_n (I_n + 1) \\ \\ \tau_n & \Box & 1 / \left[ \gamma_{\mu} \sqrt{I_n (I_n + 1)} \right] \\ \\ \text{then expect a factor of } \sim 4 \end{array}$$

Larger relaxation observed for deuterated materials Conclusion: nuclear moments on the MNMs relax the electronic spins

Lancaster et al. PRB 81, 140409(R) (2010)

 $[Cu(pyz)_2HF_2]X_2(X=BF_4, CIO_4, PF_6, AsF_6, SbF_6)$ Highly tunable, self-assembled nanostructures with 2D character First coordination polymer containing the HF<sub>2</sub><sup>-</sup> ion

(strongest known hydrogen bond!)



2D square lattice of  $Cu^{2+} S = 1/2$  spins



Linked by  $HF_2^{-}$  to form 3D structure (with X anions in the cubes)

### $[Cu(pyz)_2HF_2]BF_4$



Magnetic order below  $T_{\rm N}$ =1.54 K

Slow oscillations above 1.54 K aren't due to magnetic order...

#### Chem. Comm. 4894 (2006)



#### Quantum entanglement: $F-\mu^+$ dipole-dipole interaction The muon forms a bond with electronegative fluorine



Muon-fluorine entangled states in molecular magnets Above  $T_N$  entanglement allows us to locate the muon site



T Lancaster et al. PRL 99 267601 (2007)

Muon-fluorine entangled states in molecular magnets Above  $T_N$  entanglement allows us to locate the muon site



T Lancaster et al. PRL 99 267601 (2007)

#### Muon-fluorine entangled states in molecular magnets Above $T_{\rm N}$ entanglement allows us to locate the muon site





Octahedral  $PF_6^{-}$ 



(b)



 $HF_2$  ion

T Lancaster et al. PRL 99 267601 (2007)





#### Stacks of TMTSF molecules $\Rightarrow$ 1D chains

## **TMTSF salts**

Very rich phase diagram





#### 1D electron gas unstable to SDW formation



#### **Spin-density wave**



#### **Raw muon data on TMTSF<sub>2</sub>X**



L.P. Le et al, PRB 48 7284 (1993)

#### Spin density wave system: $\mu^+$ SR response



Note also that as  $\eta >> 1$   $J_0(\eta) \sim \left(\frac{2}{\pi\eta}\right)^{\frac{1}{2}} \cos(\eta - \pi/4)$ 

# SDW phase in (TMTSF)<sub>2</sub>X



L.P. Le et al, PRB **48** 7284 (1993)