

Neutron Scattering Theory

— *an elementary guide*

D. S. Sivia

St. John's College
Oxford, England

April 22, 2010

Bibliography	2
Basic Picture	3
Scattering Function	4
Interaction Mechanisms	5
Scattering by a Single (fixed) Nucleus	6
Scattering from Many Nuclei	7
Neutron Scattering and Fourier Transforms	8
Some Fourier Consequences	9
Inelastic scattering (non-zero energy transfer)	10
Coherent and Incoherent Elastic Scattering	11
Coherent and Incoherent Scattering	12

Bibliography

Neutron Scattering: A Primer

Roger Pynn, Los Alamos Science 19 (1990)

www.fas.org/sgp/othergov/doe/lanl/pubs/number19.htm

Elementary Scattering Theory (for X-ray and Neutron Users)

D. S. Sivia (October 2010), Oxford University Press

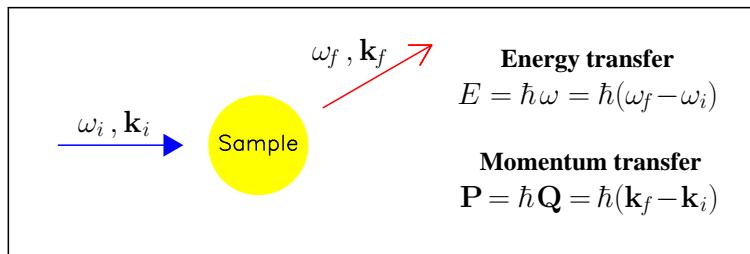
Introduction to the Theory of Thermal Neutron Scattering

G. L. Squires (1978), reprinted as a Dover Publication

Theory of Neutron Scattering from Condensed Matter

S. W. Lovesey (1984), Oxford University Press

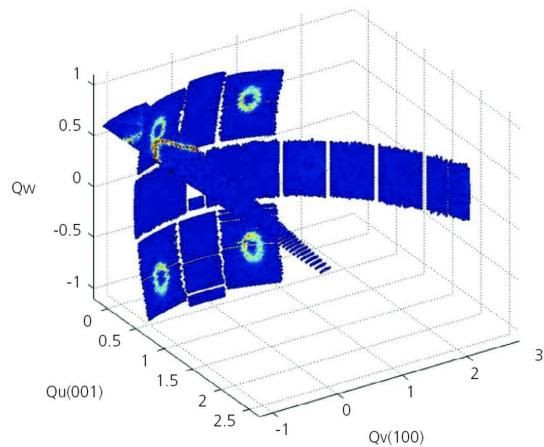
Basic Picture



- Scattering function, $S(\mathbf{Q}, \omega)$, is 4-dimensional

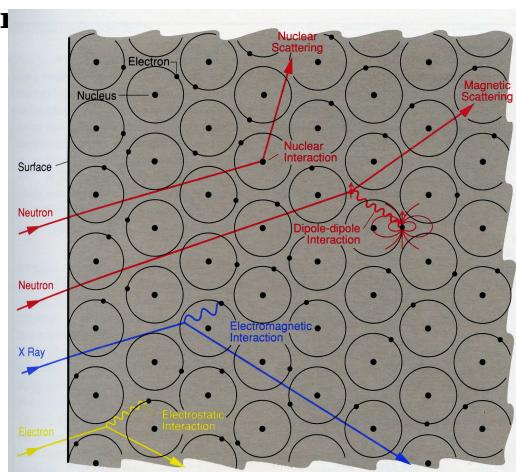
- ◆ $S_{\text{el}}(\mathbf{Q}) = S(\mathbf{Q}, 0)$
- ◆ $S_{\text{tot}}(\mathbf{Q}) = \int_{-\infty}^{\infty} S(\mathbf{Q}, \omega) d\omega$

Scattering Function



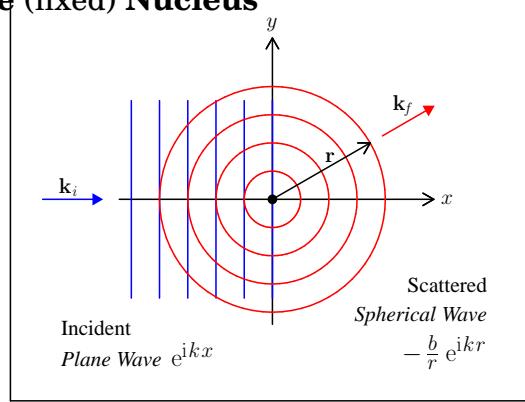
Kinematics: $\mathbf{Q} = \mathbf{k}_f - \mathbf{k}_i$ and $\omega = \frac{\hbar}{2m} (k_f^2 - k_i^2)$

Interaction Mechanisms



- Neutrons interact with
 - ◆ atomic **nuclei** via the short-range (fm) **strong** force;
 - ◆ unpaired **orbital electrons** via a **magnetic dipole** interaction.

Scattering by a Single (fixed) Nucleus

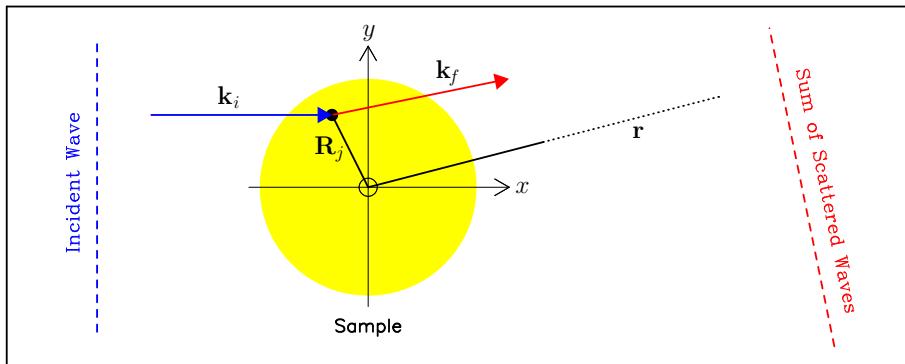


- Elastic scattering ($\omega=0$): $\omega=0 \Rightarrow |\mathbf{k}_i| = |\mathbf{k}_f| = k = \frac{2\pi}{\lambda}$

- b is called the neutron scattering length.

- ◆ TWO values for nuclei with non-zero spin.
- ◆ Cross-section $\sigma = 4\pi b^2$.

Scattering from Many Nuclei



Relative to the origin, the contribution of the scattered wave from atom j is

$$-\frac{b_j}{|\mathbf{r} - \mathbf{R}_j|} e^{i\mathbf{k}_f \cdot (\mathbf{r} - \mathbf{R}_j)} e^{i\mathbf{k}_i \cdot \mathbf{R}_j}$$

Neutron Scattering and Fourier Transforms

Since the sample is much smaller than the flight-path to the detectors,

$$\Psi_{\text{scat}} = -\frac{e^{ik_f \cdot r}}{r} \sum_j b_j e^{-i\mathbf{Q} \cdot \mathbf{R}_j} \quad \text{where } \mathbf{Q} = \mathbf{k}_f - \mathbf{k}_i \text{ and } r \gg R_j$$

The probability of being scattered into a detector of small area dA is proportional to

$$\underbrace{|\Psi_{\text{scat}}|^2 dA}_{d\sigma} = \underbrace{\frac{dA}{r^2}}_{d\Omega} \left| \sum_j b_j e^{-i\mathbf{Q} \cdot \mathbf{R}_j} \right|^2$$

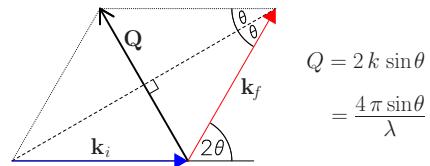
In the continuum limit of scatterers, the **differential cross-section** becomes

$$\frac{d\sigma}{d\Omega} = \left| \iiint \beta(\mathbf{R}) e^{-i\mathbf{Q} \cdot \mathbf{R}} d^3 \mathbf{R} \right|^2 \propto S(\mathbf{Q})$$

Some Fourier Consequences

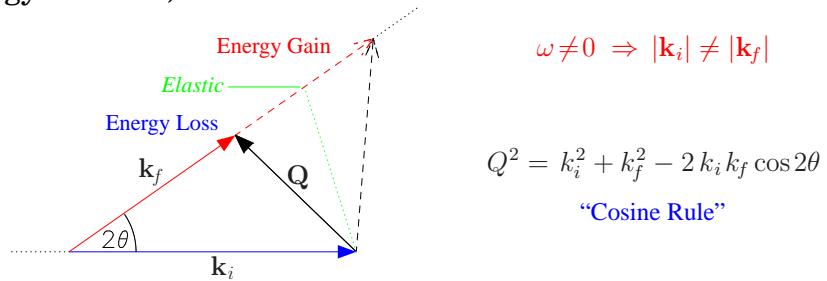
- **Bragg's law** – scattering from a **periodic lattice**

$$d\text{-spacing in } \mathbf{R} \iff \frac{2\pi}{d}\text{-spacing in } \mathbf{Q} \\ (n\lambda = 2d \sin\theta)$$



- **Debye-Waller and magnetic form factors** – scattering from **diffuse objects**
 - ◆ *Convolution theorem* \Rightarrow fall-off in scattered intensity with high- Q !

Inelastic scattering (non-zero energy transfer)



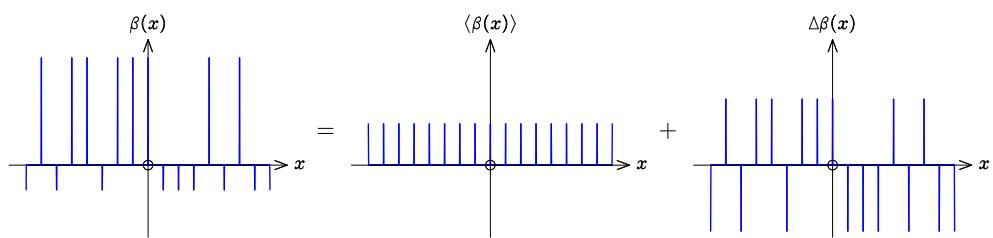
Time-dependence yields the partial differential cross-section

$$\frac{k_i}{k_f} \times \frac{d^2\sigma}{d\Omega dE} = \left| \iiint \beta(\mathbf{R}, t) e^{-i(\mathbf{Q} \cdot \mathbf{R} - \omega t)} d^3\mathbf{R} dt \right|^2 \propto S(\mathbf{Q}, \omega)$$

- **Elastic scattering** gives information on **time-averaged** structure.
- **Inelastic scattering** tells us about the **dynamical** behaviour of the sample.
- Total scattering is related to the instantaneous correlations.

Coherent and Incoherent Elastic Scattering

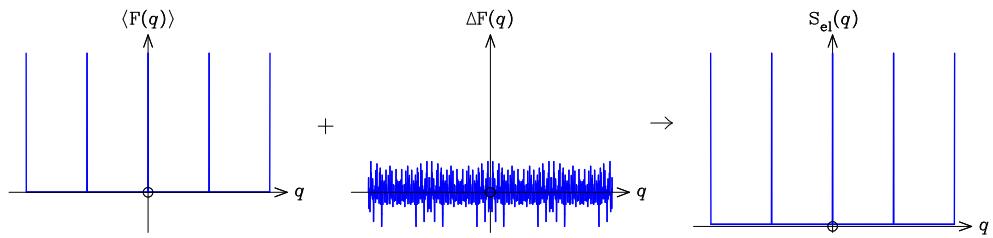
Since atoms of the same element are not “identical”, because of **isotope** and **spin** effects, it is useful to split the scattering into two parts:



- **Coherent**, or scattering from the **average** — $b_{coh} = \langle b \rangle$
- **Incoherent**, or scattering from **fluctuations** — $b_{inc}^2 = \langle b^2 \rangle - \langle b \rangle^2$

Coherent and Incoherent Scattering

- For **elastic scattering**, the incoherent contribution is background-like.



- For **inelastic scattering**, a model or polarisation analysis is required.

- ◆ **Coherent** \rightarrow correlated motion of atoms. (e.g. phonons and magnons)
- ◆ **Incoherent** \rightarrow self-correlations, or local dynamics. (e.g. diffusion)