

The muon is a quantum object.

These lectures therefore give an introduction to quantummechanical techniques used to describe muon experiments.

This lecture: spin precession.

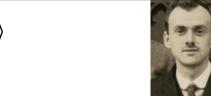
2

4

First classical treatment, then several quantum methods.

1

State of the system described by $\ket{\psi}$



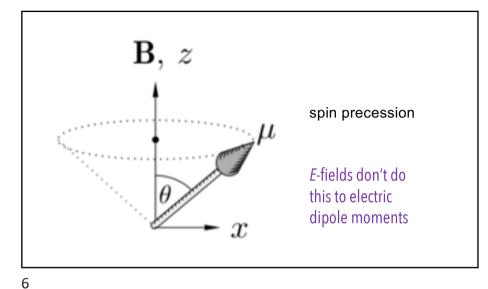
$$|\psi
angle = \left(egin{array}{c} \psi_1 \ \psi_2 \ dots \ \psi_N \end{array}
ight)$$
 ket

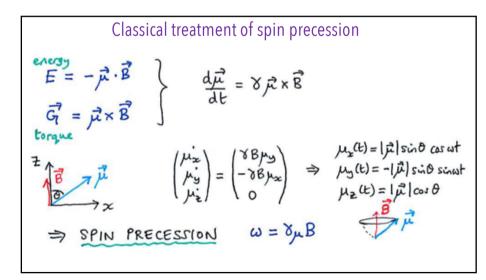
$$\langle \psi | = egin{pmatrix} \psi_1^* & \psi_2^* & \dots & \overline{\psi_N^*} \end{pmatrix}$$
 bra

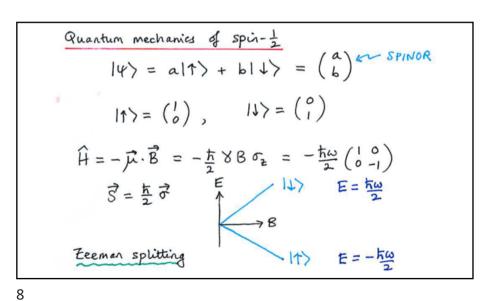
$$|\psi\rangle = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_N \end{pmatrix} \qquad \langle \psi| = \begin{pmatrix} \psi_1^* & \psi_2^* & \dots & \psi_N^* \end{pmatrix}$$
 bra
$$\langle \phi|\psi\rangle = \begin{pmatrix} \phi_1^* & \phi_2^* & \dots & \phi_N^* \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_N \end{pmatrix} = \phi_1^*\psi_1 + \dots \phi_N^*\psi_N = \text{complex number}$$
 bra-c-ket

Magnetic moment and angular momentum $\vec{R}_{\mu} = \vec{S}_{\mu} \cdot \vec{S}_{\mu}$ $\frac{\vec{S}_{\mu}}{2\pi} = 135.5 \text{ MHz T}^{-1}$

Property	μ^+	π^+	e	p
Mass	$1.8835 \times 10^{-28} \text{ kg}$	$2.488 \times 10^{-28} \text{ kg}$	$9.1094 \times 10^{-31} \text{ kg}$	$1.6726 \times 10^{-27} \text{ kg}$
	$105.66~\mathrm{MeV}$	139.57 MeV	$0.51100 \ MeV$	938.27 MeV
	$0.1126m_{\rm p}$	$0.1487m_{\rm p}$	$m_p/1836.2$	$m_{\rm p}$
	$206.768m_e$	$273.13m_e$	$m_{\rm e}$	$1836.2m_{\rm e}$
Charge	+e	+e	-e	+e
Spin	$+e$ $\frac{1}{2}$	0	$\frac{1}{2}$	1 2
Magnetic	$4.4904 \times 10^{-26} \text{ J T}^{-1}$	0	2 $-928.48 \times 10^{-26} \text{ J T}^{-1}$	1.4106×10 ⁻²⁶ J7
moment	$3.1833 \mu_{\rm p}$	0	$-658.21\mu_{\rm p}$	μ_{p}
	$8.891 \mu_N$	0	$-1838.3\mu_{N}$	$2.7928\mu_{N}$
	$4.842 \times 10^{-3} \mu_B$	0	$-1.001\mu_{\rm B}$	$1.521 \times 10^{-3} \mu_B$
$ \gamma /(2\pi)$	$135.53 \text{ MHz T}^{-1}$	0	$28024.21 \text{ MHz T}^{-1}$	$42.577 \text{ MHz T}^{-1}$
Lifetime	2.19703×10^{-6} s	$0.0260 \times 10^{-6} \text{ s}$	$> 4 \times 10^{23}$ years	$> 2 \times 10^{26}$ years

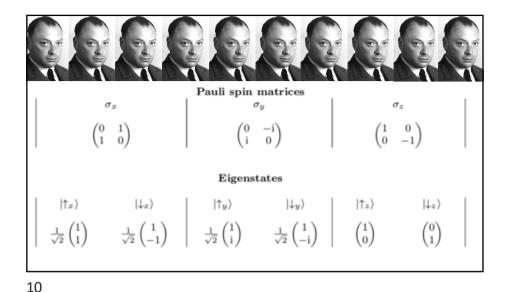






Pauli spin matrices
$$\vec{\sigma} = (\sigma_{x}, \sigma_{y}, \sigma_{z}) \qquad \sigma_{z} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
For a general direction $\vec{\Omega}$

$$\hat{n} \cdot \vec{\sigma} = \begin{pmatrix} n_{z} & n_{z} - i n_{y} \\ n_{x} + i n_{y} & -n_{z} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta e^{-i\phi} \\ \sin \theta e^{i\phi} & -\cos \theta \end{pmatrix}$$
Figenotates are $|+\rangle = \begin{pmatrix} \cos \frac{\theta}{2} \\ \sin \frac{\theta}{2} e^{i\phi} \end{pmatrix} \qquad |-\rangle = \begin{pmatrix} \sin \frac{\theta}{2} \\ \cos \frac{\theta}{2} e^{i\phi} \end{pmatrix}$



Quantum mechanical treatment of spin precession (1)

$$B||Z \quad |\text{lnihal muon polaritation}$$

$$|Y(0)\rangle = \begin{pmatrix} \cos \frac{9}{2} \\ \sin \frac{9}{2} \end{pmatrix} = \cos \frac{\theta}{2} |T\rangle + \sin \frac{\theta}{2} |Y\rangle$$

$$\text{Time-dependence}: \quad \widehat{H}|Y\rangle = \text{if } \frac{d}{dt}|Y\rangle$$

$$|Y(t)\rangle = e^{\text{i}\omega t/2} \cos \frac{\theta}{2} |T\rangle + e^{-\text{i}\omega t/2} \sin \frac{\theta}{2} |Y\rangle$$

$$\langle Y(t)|\sigma_{2}|Y(t)\rangle = \sin \theta \cos \omega t \quad \text{spin} \quad$$

Quantum mechanical treatment of spin precession (2)

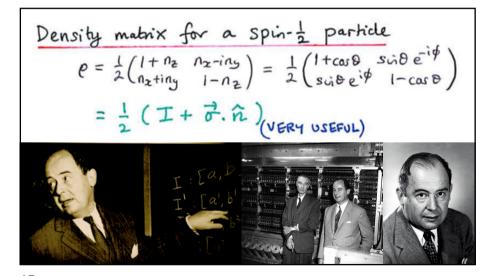
Time-evolution operator $H = -\frac{\hbar\omega}{2} \vec{R} \cdot \vec{\sigma}$ $\vec{U}(t) = e^{-i\hat{H}t/k} = \cos\frac{\omega t}{2} T + i\sin\frac{\omega t}{2} \vec{n} \cdot \vec{\sigma}$ $|\Psi(t)\rangle = \hat{U}(t)|\Psi(0)\rangle = \begin{pmatrix} \cos\frac{\omega t}{2} + i\sin\frac{\omega t}{2} & 0 \\ 0 & \cos\frac{\omega t}{2} - i\sin\frac{\omega t}{2} \end{pmatrix} \begin{pmatrix} \cos\frac{\omega t}{2} \\ \sin\frac{\omega t}{2} \end{pmatrix}$ $= \begin{pmatrix} e^{i\omega t/2} \cos\frac{\omega t}{2} \\ e^{-i\omega t/2} \sin\frac{\omega t}{2} \end{pmatrix} \rightarrow same result$

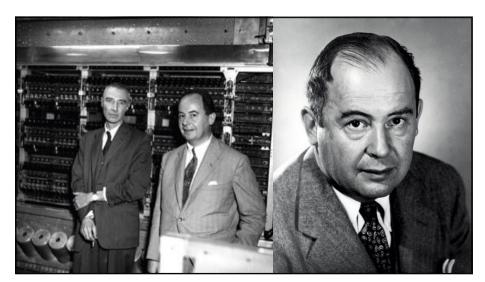
Density matrix
$$\rho = |\Psi\rangle\langle\Psi| \quad \text{o... pure state}$$

$$\langle A \rangle = \langle \Psi | \hat{A} | \Psi \rangle = \text{Tr} \left(\hat{A} | \Psi \rangle \langle \Psi | \right) = \text{Tr} (\hat{A} \varrho)$$
example $\hat{A} = i \text{ dentity}, \quad \text{Tr} \varrho = 1$

$$|\Psi(t)\rangle = \hat{U}(t) |\Psi(0)\rangle \quad \langle \Psi(t)| = \hat{U}(t)^{\dagger} \langle \Psi(0)|$$

$$\vdots \quad \varrho(t) = \hat{U}(t) \varrho(0) \hat{U}(t)^{\dagger}$$





Quantum mechanical treatment of spin precession (3)

The initial muon spin is $\begin{pmatrix} \cos \frac{\theta}{2} \\ \sin \frac{\theta}{2} \end{pmatrix}$, so the density matrix is

$$\rho(0) = |\psi(0)\rangle\langle\psi(0)| = \begin{pmatrix} \cos^2\frac{\theta}{2} & \cos\frac{\theta}{2}\sin\frac{\theta}{2} \\ \cos\frac{\theta}{2}\sin\frac{\theta}{2} & \sin^2\frac{\theta}{2} \end{pmatrix} = \frac{1}{2}\begin{pmatrix} 1+\cos\theta & \sin\theta \\ \sin\theta & 1-\cos\theta \end{pmatrix}$$

so that adding the time dependence produces

$$\rho(t) = \hat{U}(t)\rho(0)\hat{U}(t)^{\dagger} = \frac{1}{2}\begin{pmatrix} 1 + \cos\theta & e^{i\omega t}\sin\theta \\ e^{-i\omega t}\sin\theta & 1 - \cos\theta \end{pmatrix}$$

Then the expected value of the spin is given by

$$\langle \sigma_x(t) \rangle = \text{Tr}(\sigma_x \rho(t)) = \sin \theta \cos \omega t$$

 $\langle \sigma_y(t) \rangle = \text{Tr}(\sigma_y \rho(t)) = -\sin \theta \sin \omega t$

$$\langle \sigma_z(t) \rangle = \text{Tr}(\sigma_z \rho(t)) = \cos \theta.$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 1 \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{i\phi} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\$$