Doing Chemistry with Muons ...

Investigating Reaction Kinetics, Rates of H atom abstraction in alkanes

Stephen Cottrell ISIS Facility, STFC Rutherford Appleton Lab

Outline

- Recap:
 - Muons, chemistry and reactions
 - Studying Muonium (Mu)
 - Kinetic measurements
 - RF measurements
- Alkane abstraction reactions:
 - Formulating a study
- New measurements for propane:
 - Kinetics from source or product states
 - Measuring a slow reaction RF methods
 - Story so far

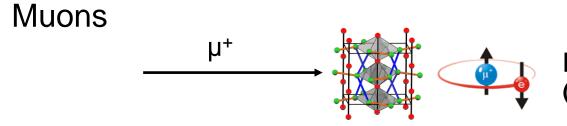
Acknowledgements

Experiment Team: **Don Fleming** (TRIUMF) **PI** Iain McKenzie (TRIUMF) Jamie Peck (STFC)

Gas cells, etc:

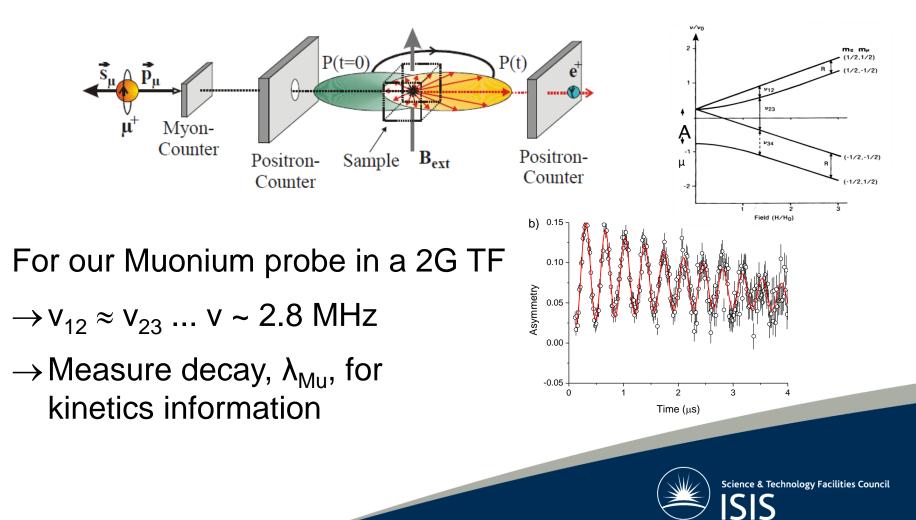
Chris Goodway, Mark Kibble, Colin Offer

EC (NMI3-I) for grant support



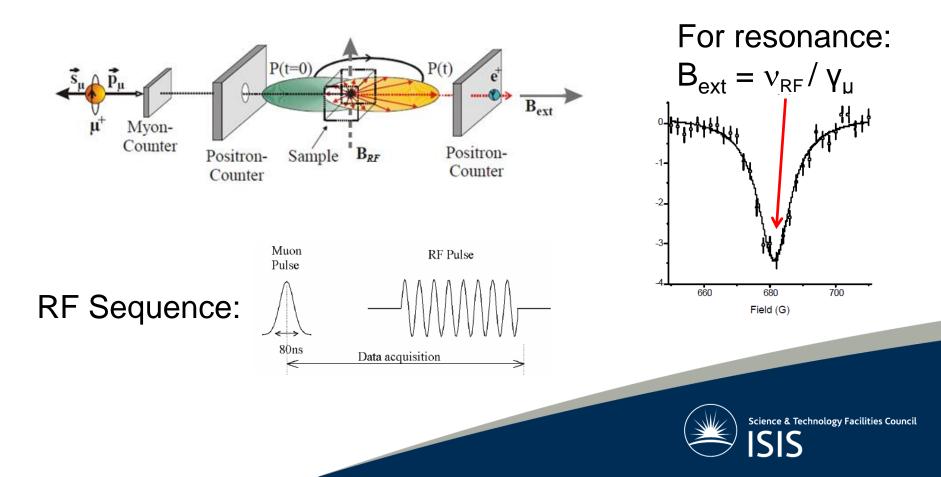
(from Chemistry and Pulsed Techniques lectures)

Muons, chemistry and reactions

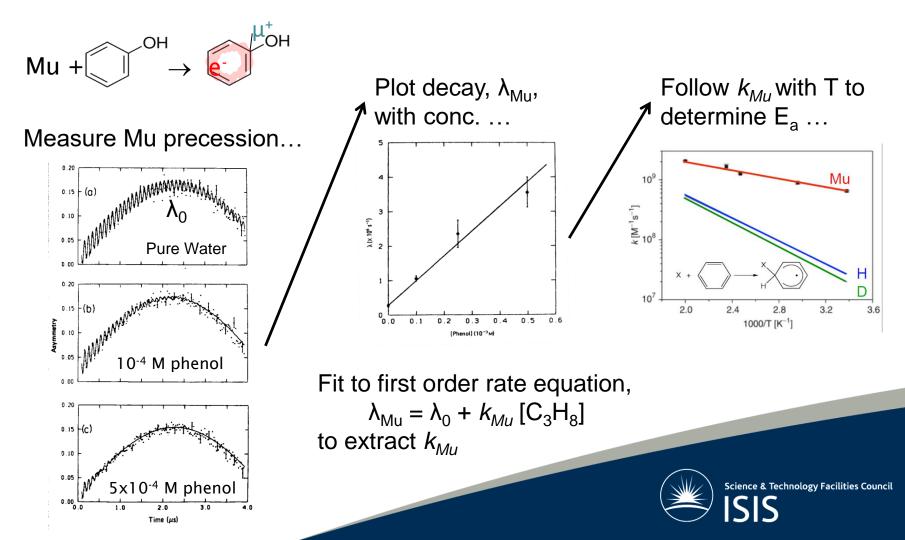

Mu, paramagnetic (bound muon and electron)

- Chemistry
 - Depending on Mu being chemically equivalent to H-atom
 - Greatly extends isotopic mass comparison $(m_{Mu} / m_H \sim 1/9; m_{Mu} / m_D \sim 1/18)$
- Reaction

TF Measurements - Muonium


For a field perpendicular to the muon spin ('TF'):

RF Measurements

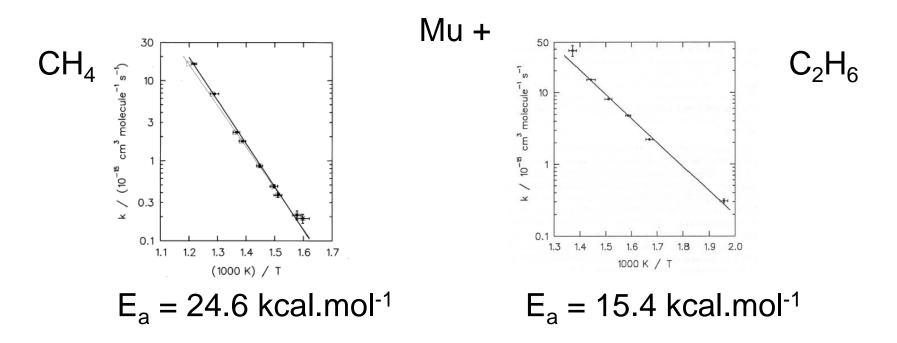

Now we'll use a:

- Static field parallel to the muon spin, B_{ext}
- RF field perpendicular to the muon spin, B_{RF}

Kinetics Measurements

Example: Reaction of Mu with phenol solutions (addition) ...

Alkane Abstraction Reactions


Abstraction Reactions with Alkanes

Excellent test of reaction rate theory:

- Study Mu abstraction rates for a homologous series: the lower mass alkanes (CH₄, C₂H₆, C₃H₈, ...)
- Study kinetic isotope effects: relate to work reporting abstraction rates for H and D, we can extend this to include Mu (m_{Mu} / m_H ~ 1/9)

Homologous Series Comparison

Homologous ...

same functional groups, similar chemical properties ...

But activation energy for C_2H_6 is <u>lower</u> than for CH_4

(from Snooks et al, J. Chem. Phys. 102 (1995) 4860)

Isotope Comparison

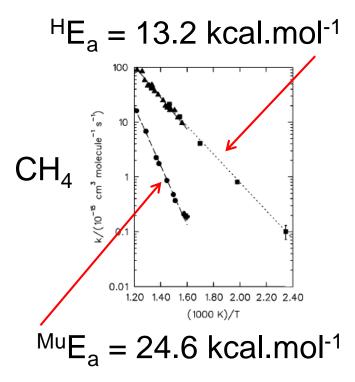


TABLE III. Comparison of E_a and ΔH^0 for Mu- and H-atom variants of reactions (1)–(5). Temperature ranges for Mu studies: 473–843 K for H₂ and D₂ reactions; 510–730 K for C₂H₆; 626–821 K for CH₄.

	Reaction	$E_a/(\text{kcal/mol})$	Refs.	$\Delta H^0/(\rm kcal/mol)$	Refs.
	$H+H_2\rightarrow H_2+H$	8.5±0.5	11	0.0	3,11
	$Mu+H_2 \rightarrow MuH+H$	13.3±0.2	3	7.5	3,11
	$H+D_2 \rightarrow HD+D$	9.4±0.3	11	1.0	3,12
-	$M_{11}+D_{-}\rightarrow M_{11}D_{+}D_{-}$	14 7+0 4	3	<u>84</u>	3 11 12
L	$H+C_2H_6\rightarrow H_2+C_2H_5$	9.8±0.4	38,39	-3.2	40,41
L	$Mu+C_2H_6\rightarrow MuH+C_2H_5$	15.4±0.7	10	4.4ª	10
L	$H+CH_4\rightarrow H_2+CH_3$	13.2±0.8	28	-0.2 ^b	31,33
L	$Mu+CH_4 \rightarrow MuH+CH_3$	24.6±0.9		7.3ª	

^aEstimated from ZPE differences, as discussed in the text.
^bAn average of the values calculated in Refs. 31,33,34, as discussed in the text.

$$C_2H_6$$
: ^{Mu}E_a – ^HE_a = 5.6 kcal.mol⁻¹
CH₄: ^{Mu}E_a – ^HE_a = 11.4 kcal.mol⁻¹

Difference for C_2H_6 in line with that expected from diff. in ZPE, But *difference for CH*₄ <u>much larger</u> than expected

(from Snooks et al, J. Chem. Phys. 102 (1995) 4860)

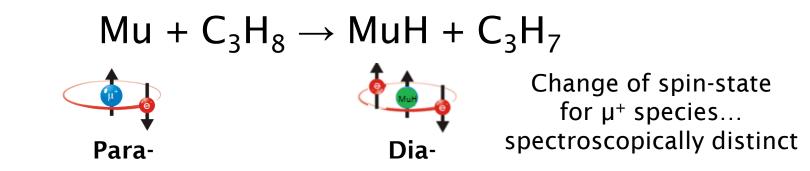
Developing the study

Clear interest in:

- extending the study to higher mass alkanes and
- continuing isotopic comparison

Next step:

To study H abstraction in propane
 But this is likely to be a slow reaction...



New Measurements for Propane

Developing the study

Objective is to measure kinetics for...

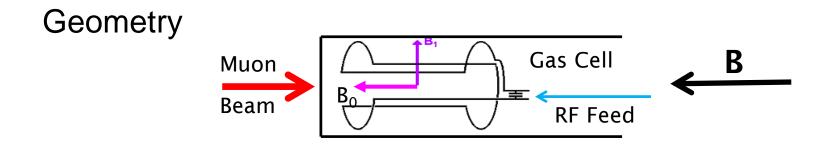
Try a new technique ...

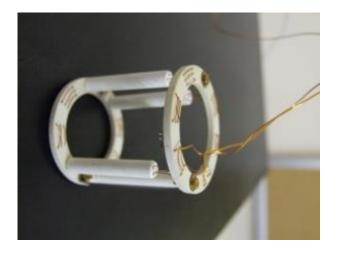
Measure *formation* of MuH (excite MuH with RF, cf. NMR) λ_0 not an issue – large field, *better for slow reactions?*

Experiment Setup

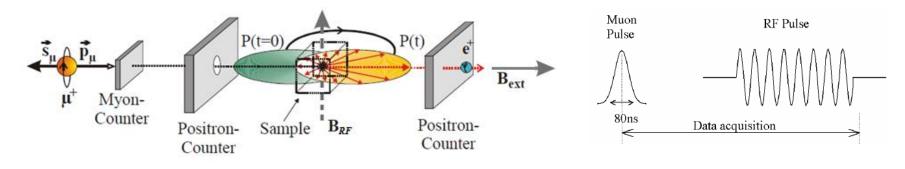
Experiment requirements make it tough!:

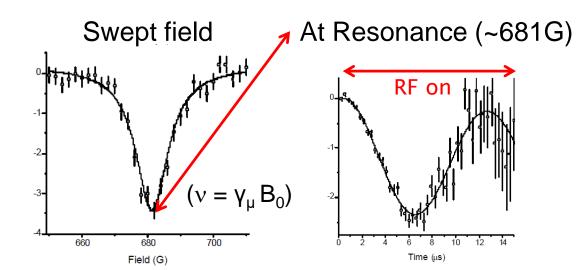
- Working Pressure to 50 bar
- Thin window to admit muons
- Extended path (~cm) to stop muons
- Variable T: ~ -50°C to 250°C
- Resonance cavity


Final design:


- 46cm long x 3.5cm diameter SS cell
- Window 150µm Ti foil
- Circulate oil for T control
- Integral RF coil

Experiment Setup

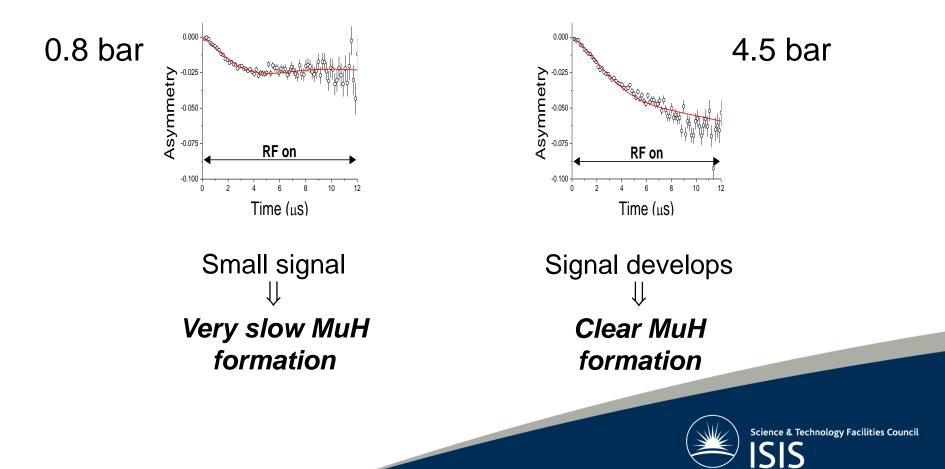




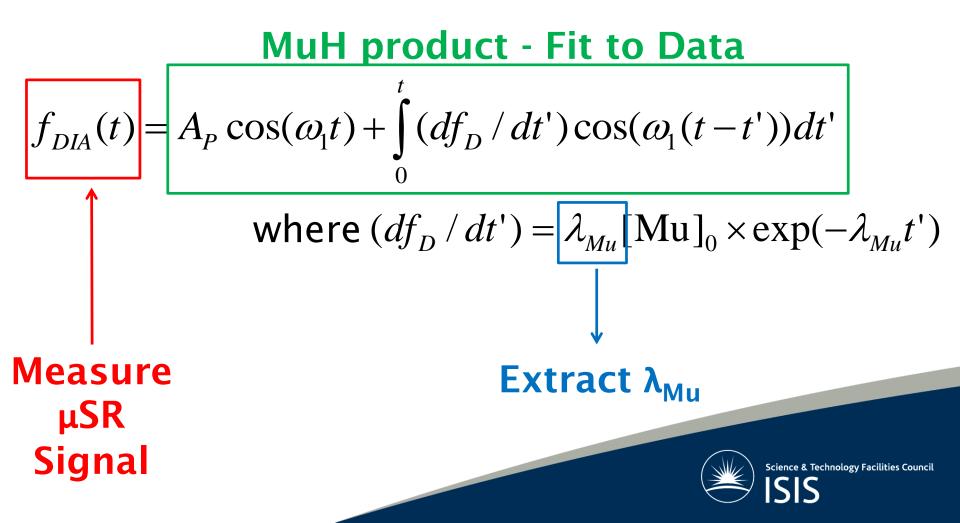
RF Coil: 'mouse size' saddle coil Tuned and matched to 50Ω between ~9-13MHz

RF Measurements

RF Coil tuned 9.2 MHz, $(\gamma_{\mu} = 13.55 \text{kHz/G})$


RF on for ~32µs following muon implantation

Precession about RF field, $B_1(t) \sim 6G$

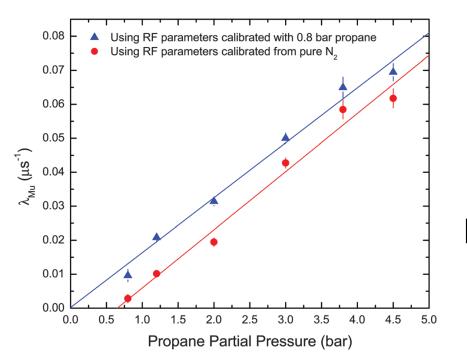


 $Mu + C_3H_8 \rightarrow MuH + C_3H_7$

Propane (+ N₂ buffer to maintain constant stopping distribution)

Expression to signal for state conversion provided by Morozumi *et al* (Phys Lett A 1986 **118** 93):

But lots of parameters to determine ...


Table 1 Description of the parameters that enter eqn (8) in fitting the RF data for $Mu + C_3H_8$

Parameter	Description
$ \begin{array}{l} A_{\rm P} \\ A_{\rm D} \\ A_{\rm T,Dia} \\ A_{\rm Mu} \\ B \\ \nu_1 \\ \lambda_1 \end{array} $	The prompt diamagnetic amplitude. The diamagnetic amplitude formed by reaction. The initial diamagnetic amplitude at 20 G, contributions from A_P and A_D . The initial total Mu amplitude. Determined from 2 G TF measurements. The longitudinal field on resonance, 1182 G. The diamagnetic precession frequency on resonance, determined by calibration. The relaxation rate due to B_1 inhomogeneity, also calibrated.
$ \nu_0 $ $ $	The hyperfine coupling constant for the vacuum Mu atom, 4463.3 MHz. The spin flip rate, estimated from T ₁ relaxation at the applied field on resonance. The mean conversion time for the Mu + C ₃ H ₈ reaction, $\tau = 1/\lambda_{Mu}$.

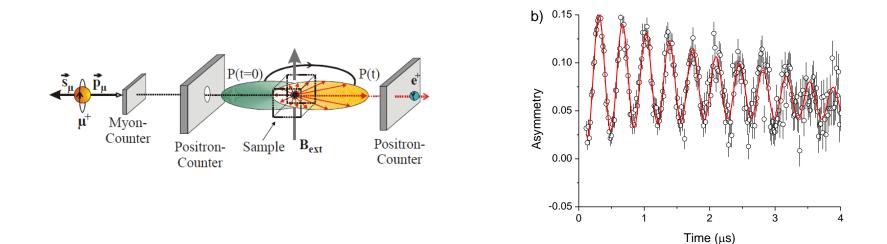
Most can be determined by calibration measurements ... but lots of potential for errors!

At 300K, for propane:

Fitting to: $\lambda_{Mu} = \lambda_0 + k_{Mu} [C_3 H_8]$

Much faster than expected... (cf. ~10⁻¹⁹ CH₄ / C₂H₆).

(from Fleming et al, PCCP 17 (2015) 19901)


if it's this fast

Direct measurement of the disappearance of Mu should be possible for this system

A simpler TF-µSR experiment might be feasible ...

Back for TF-µSR ...

Measure decay, λ_{Mu} , for kinetics information

TF-µSR Measurements

 $E_a = 1.63 \pm 0.15 \text{ Kcal/mol}$

Science & Technology Facilities Council

(Fleming et al, to be published)

Summarising what we did ...

- Started out by following formation of MuH product using RF techniques
- Obtained a value for k_{Mu} at 300K
- Noticed it was much faster than anticipated
- Continued study by following disappearance of Mu, measuring λ_{Mu} using TF- μSR
- Determined k_{Mu} over a range of temperatures and hence E_a
- What do the results tell us (so far)?

Conclusions

Rate constant at 300K (RF data) surprisingly fast: $k_{Mu} = (6.8 \pm 0.5) \times 10^{-16} \text{ cm}^3 \text{s}^{-1} (\text{cf.} \sim 10^{-19} \text{ CH}_4 / \text{C}_2 \text{H}_6).$

TF- μ SR results confirm this ... therefore, a small activation energy is expected. Confirmed by TF measurements: E_a = 1.63 ± 0.15 kcal/mol (cf. 1/10 value for C₂H₆).

Classical TST theory suggests $k_{Mu}/k_H \sim 1/1000$, but experiments suggest $k_{Mu}/k_H \sim 1/3$.

Results suggest a large and unexpected contribution from quantum tunnelling in the Mu + C_3H_8 reaction.

At this point, help needed from computational chemists!

