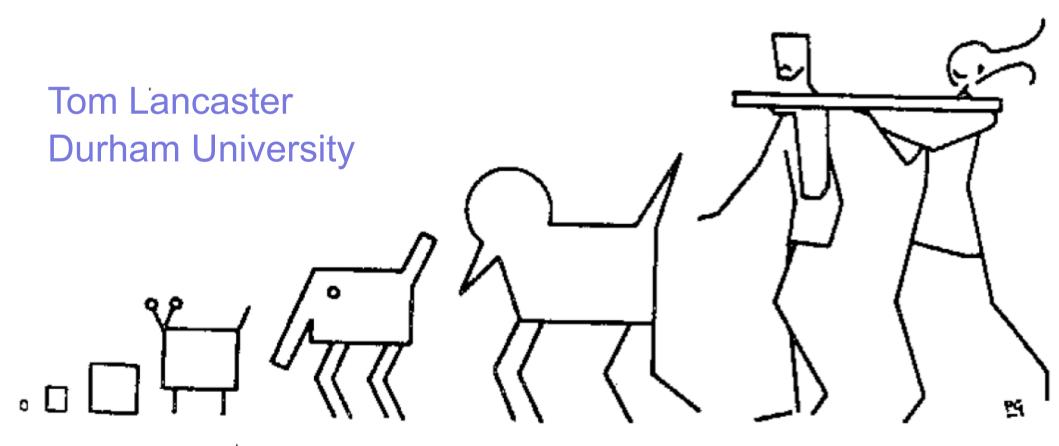
Lecture 1 Muons and (static) magnetism



Various animals attempting to follow a scaling law.

Lecture 1:

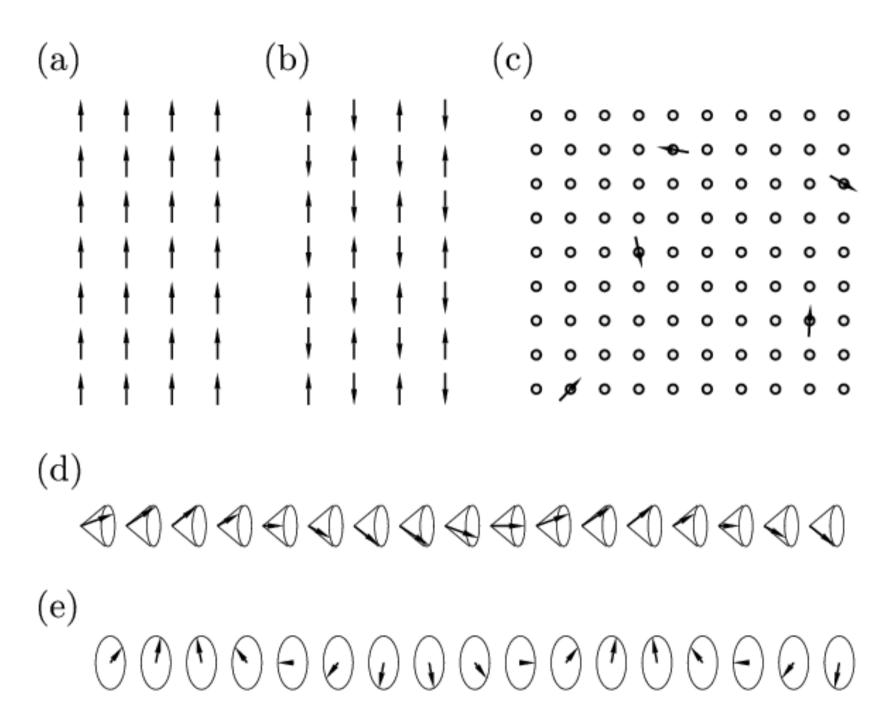
Magnetic order and muon oscillations

Magnetic fields and the muon

Distributions of fields and the spin density wave

With grateful thanks to S.J. Blundell for permission to use many of his slides!

The many faces of magnetism

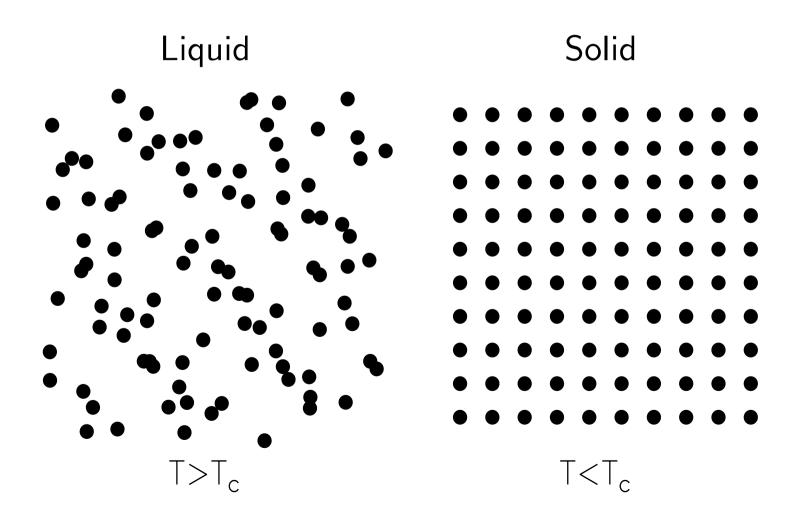


How do we understand the occurrence of magnetic order?

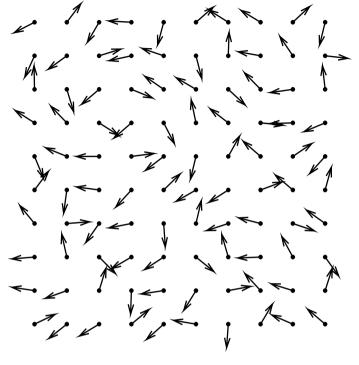
Lev Landau (1908-1968)

Philip Anderson (1923-)

Examples of broken symmetry



Paramagnet



Ferromagnet

 $T > T_c$

 $T < T_c$

Broken symmetry is a cornerstone of CMP

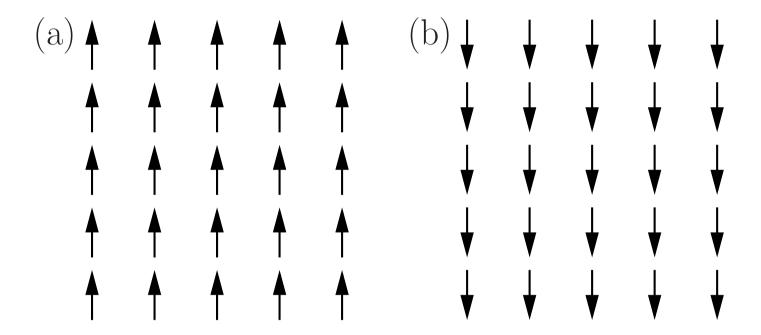
Consider a magnet

These magnets are the same

Broken symmetry is a cornerstone of CMP

Consider a magnet

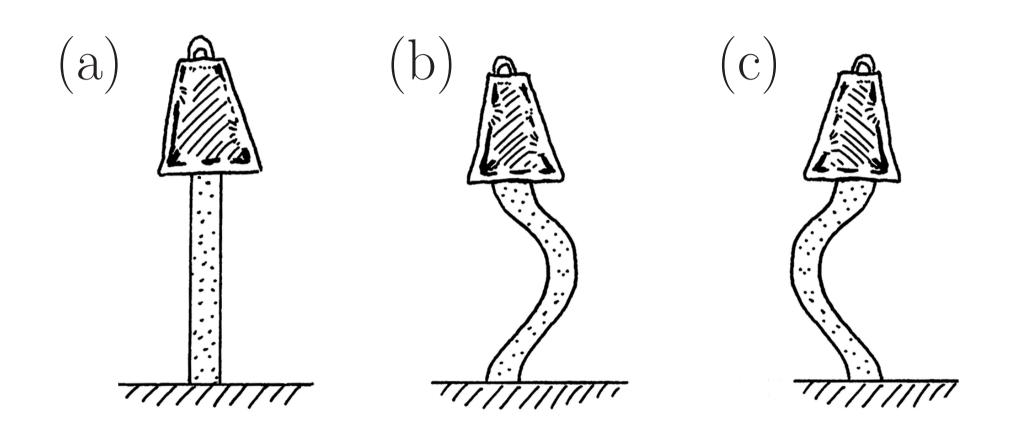
T<T_c



These magnets are different

Buridan's donkey

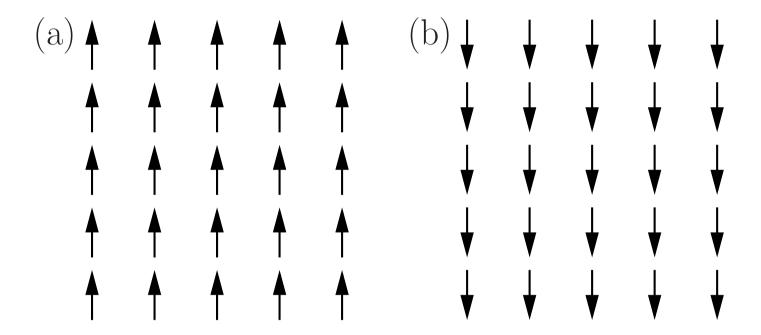
Euler strut



Broken symmetry is a cornerstone of CMP

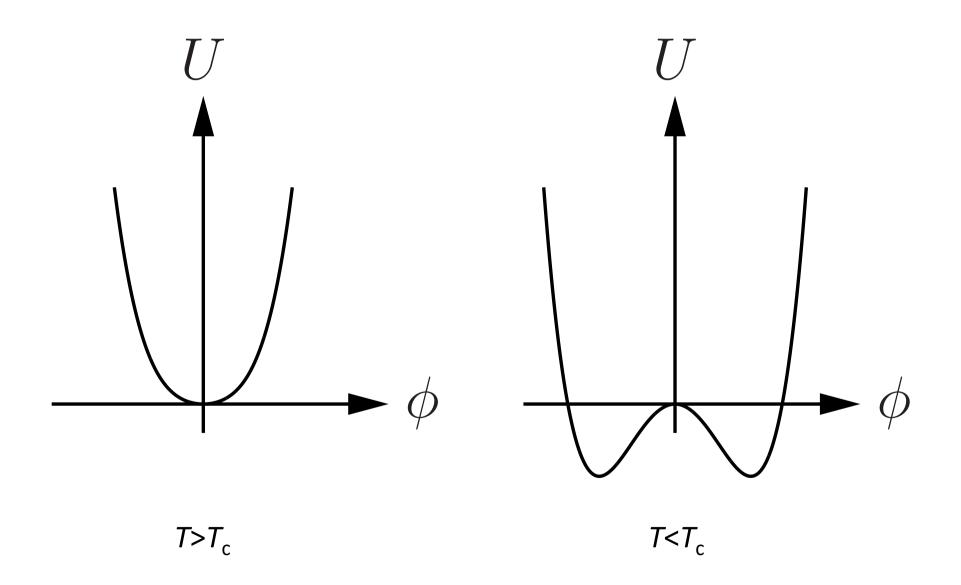
Consider a magnet

T<T_c



These magnets are different

This has a simple mathematical description



Landau mean-field theory

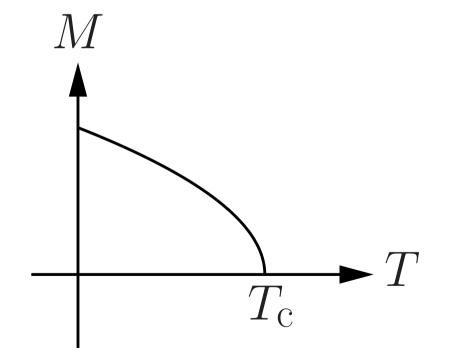
$$F = F_0 + a(T - T_c)M^2 + bM^4 + \dots$$

$$\frac{\partial F}{\partial M} = 2a(T - T_c)M + 4bM^3 = 0$$

$$M_0^2 = -\frac{a(T - T_c)}{2b}$$
Minima in the free energy may be
identified
$$M_0 = \left[\frac{a(T_c - T)}{2b}\right]^{\frac{1}{2}} \quad T < T_c$$

$$= 0 \quad T > T_c$$

• Phase transitions



The 4-fold way of broken symmetry

Phase transitions

Mathematical singularity at $T_{\rm c}$

Rigidity

order transmits forces

New excitations

New particle spectrum

• Defects

Walls that separate different order in different places

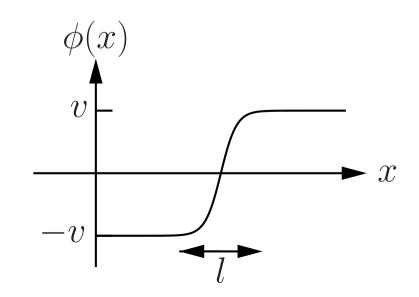
The magnet

• Order parameter *M*

- Rigidity: permanent magnetism

• Excitations: magnon particles

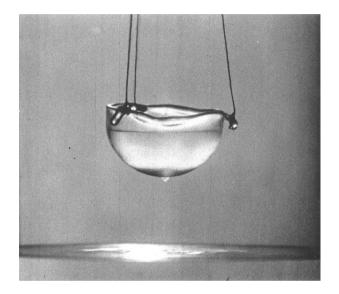
• Defects: domain walls



Superfluids and superconductors

• Order parameter: $\langle \Psi(x) \rangle$

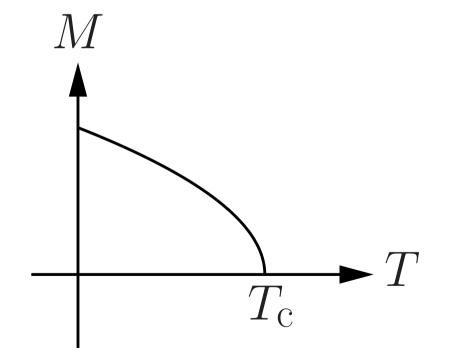
• Rigidity: the supercurrent



K K V V

- Excitations: Bogolons (via the Higgs mechanism in a SC)
- Defects: vortices

• Phase transitions



Critical exponents

Three commonly discussed

$$M \propto (T_{\rm c} - T)^{\beta} \qquad T < T_{\rm c}$$
$$M \propto H^{1/\delta} \qquad T = T_{\rm c}$$
$$\chi = \frac{\partial M}{\partial H}\Big|_{H \to 0} \propto |T - T_{\rm c}|^{-\gamma} \quad T \to T_{\rm c}$$

Critical exponents

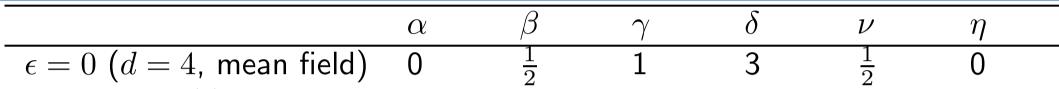
- Heat capacity: $C \sim |t|^{-\alpha}$,
- Magnetization: $M \sim (-t)^{\beta}$, for $B \rightarrow 0$, $T < T_{\rm c}$,
- Magnetic susceptibility: $\chi \sim |t|^{-\gamma}$,
- Field dependence of χ at $T=T_{\rm c}:\;\chi\sim|B|^{1/\delta}$,
- Correlation length: $\xi \sim |t|^{-\nu}$,
- The correlation function G(r) behaves like

$$G(r) \sim \left\{ \begin{array}{cc} \frac{1}{|r|^{d-2+\eta}} & |r| \ll \xi \\ e^{-\frac{|r|}{\xi}} & |r| \gg \xi, \end{array} \right\}$$

where r is distance and d is the dimensionality of the system.

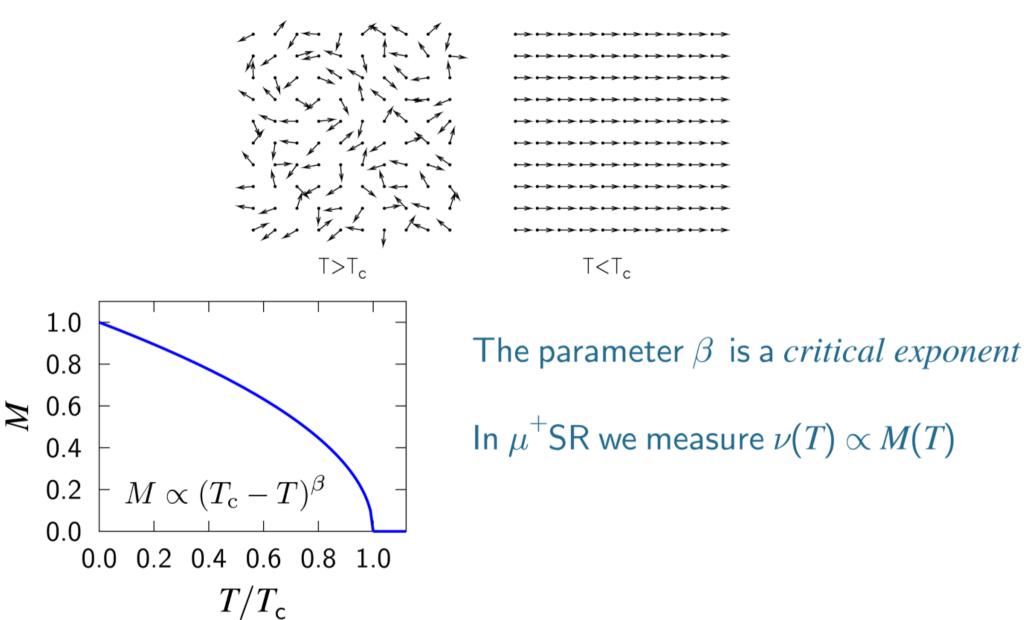
Exponents don't rely on any length scale in the system

Critical exponents for mean field theory



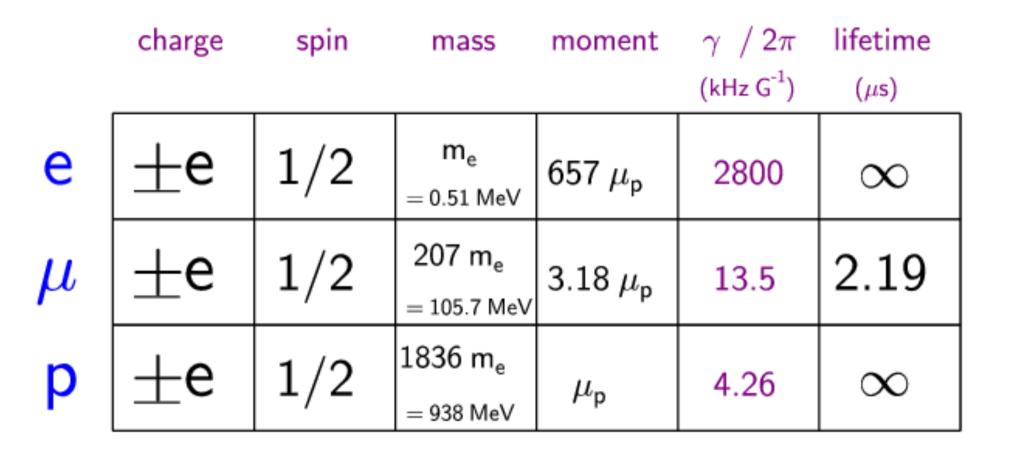
The muon

Critical phenomena in magnetism

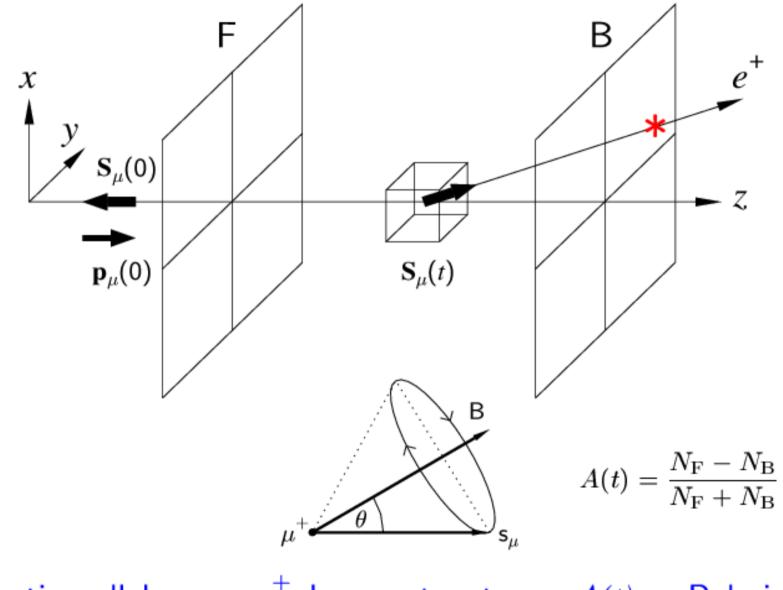


S.J. Blundell Magnetism in Condensed Matter

Particle properties



Muon spin relaxation



spin antiparallel to momentum

 μ^+ decays at rest

 $A(t) \propto \text{Polarization}$

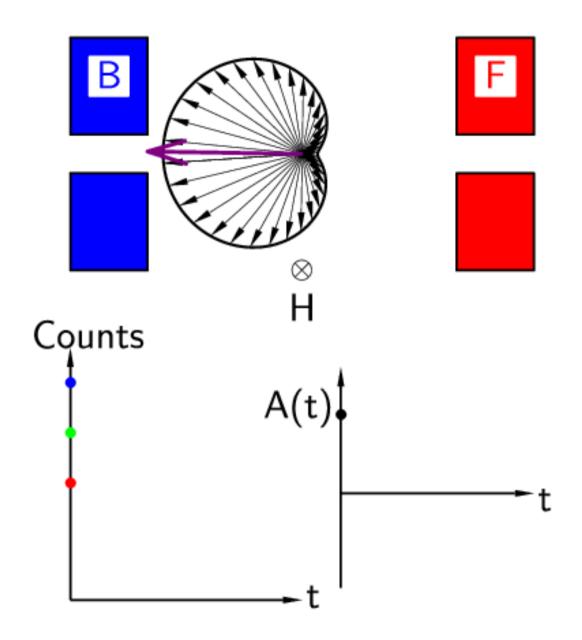
muons

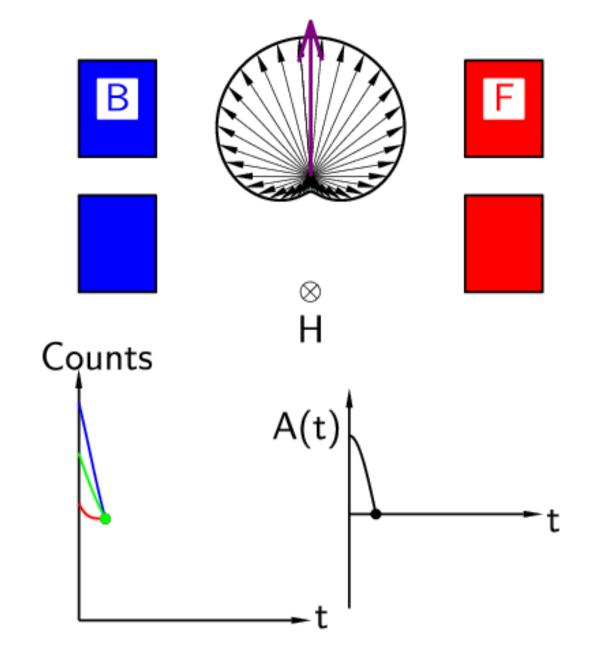
cryostat

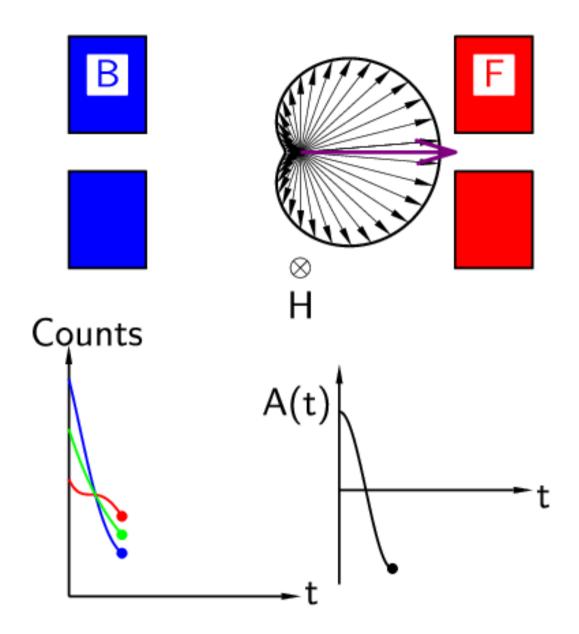
quadrupole magnet

Helmholtz magnet

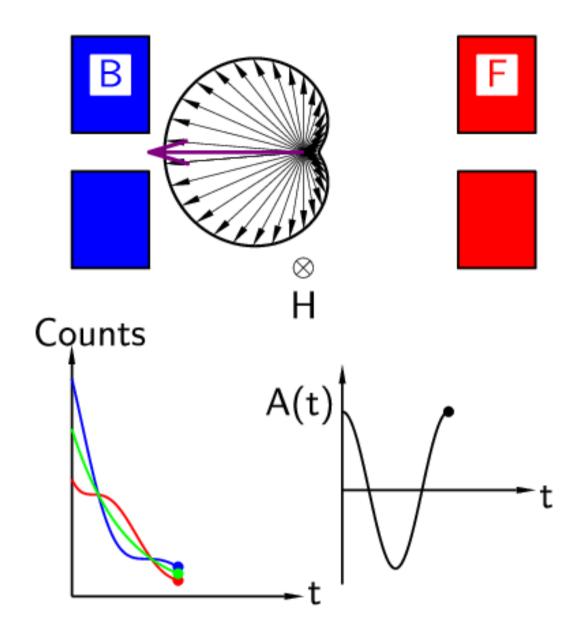
> photomultiplier tubes

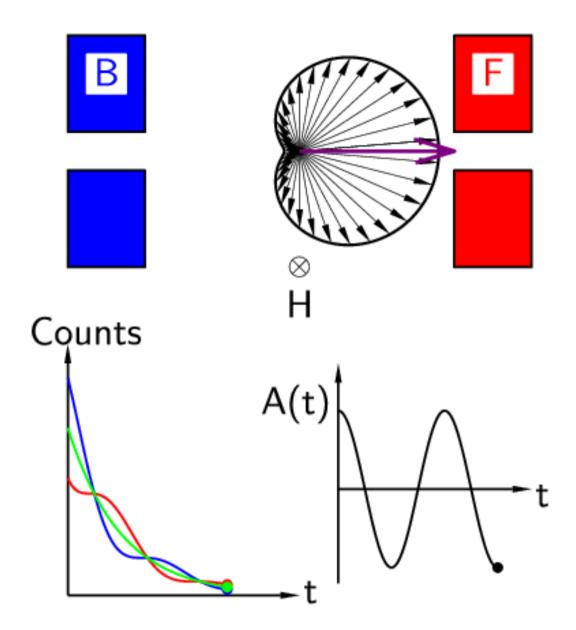


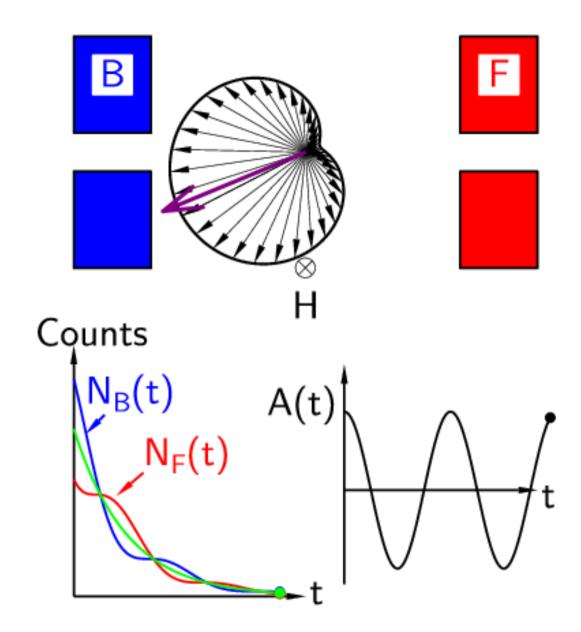




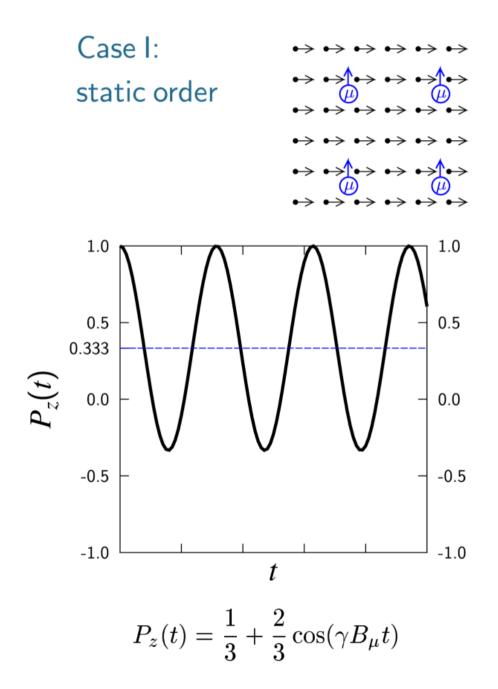




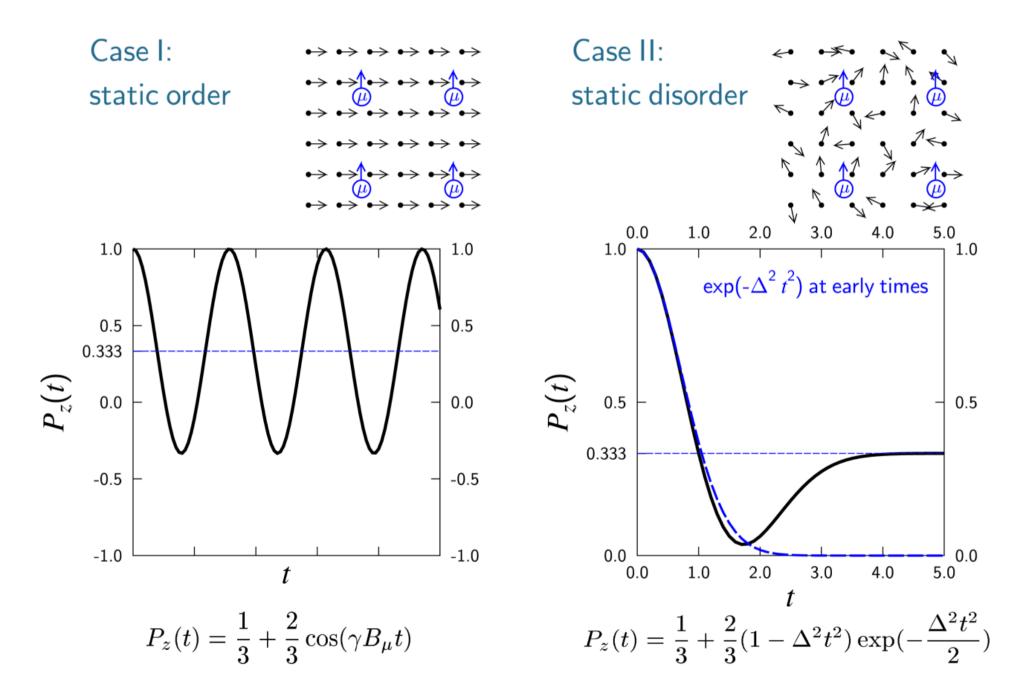


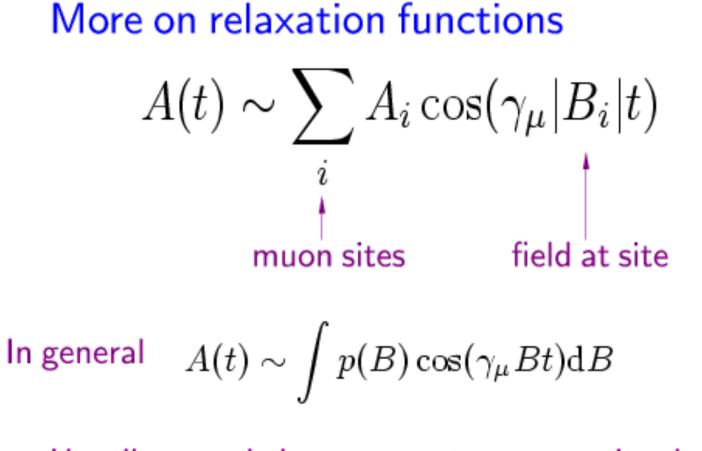


Typical spectra for polycrystalline samples



Typical spectra for polycrystalline samples





Usually we only have one or two muon sites but we need to take account of broadening/dynamics

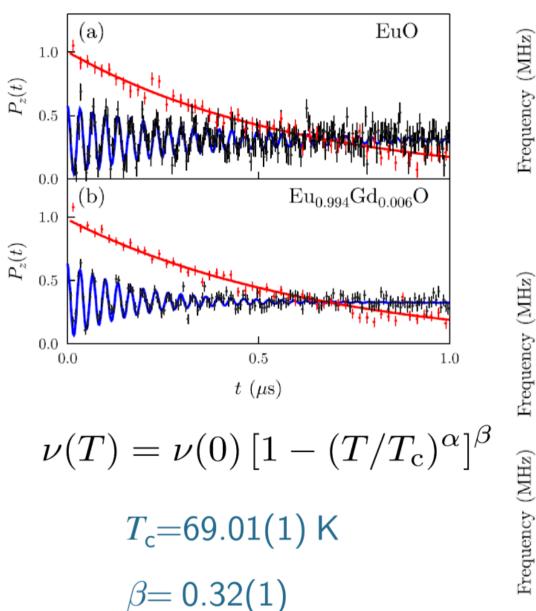
$$A(t) = \frac{1}{3} \exp(-\lambda_{\parallel} t) + \frac{2}{3} \exp(-\lambda_{\perp} t) \cos(\gamma_{\mu} B t)$$

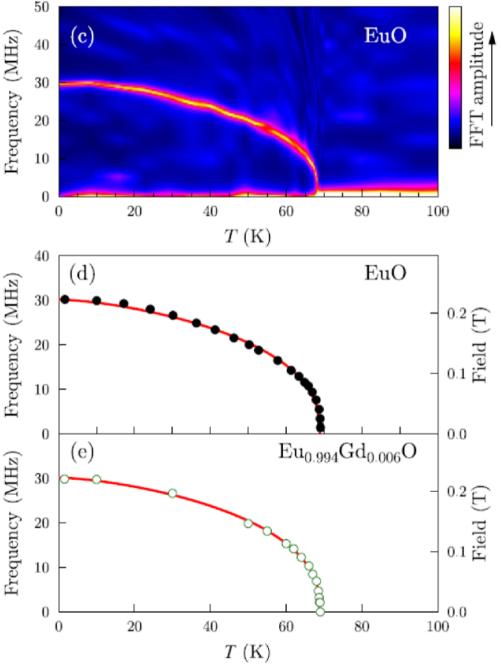
$$\uparrow$$

$$1/T_{1}$$

$$1/T_{2}$$

EuO is THE localized ferromagnet

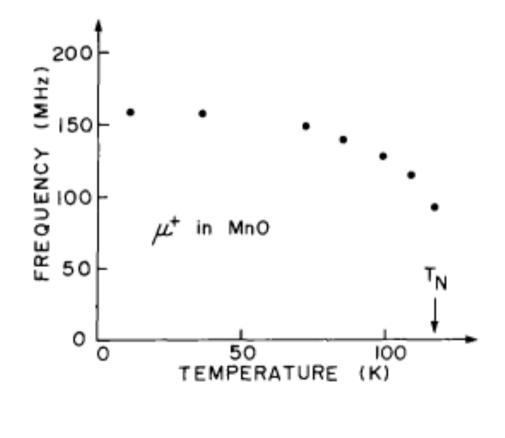




S.J. Blundell et al. PRB 81, 092407 (2010)

Antiferromagnets

Muons work just as well, since they measure local magnetic fields



Y.J. Uemura *et al.*, Hyperfine Interactions **17**, 339 (1984) How to fit your precession data

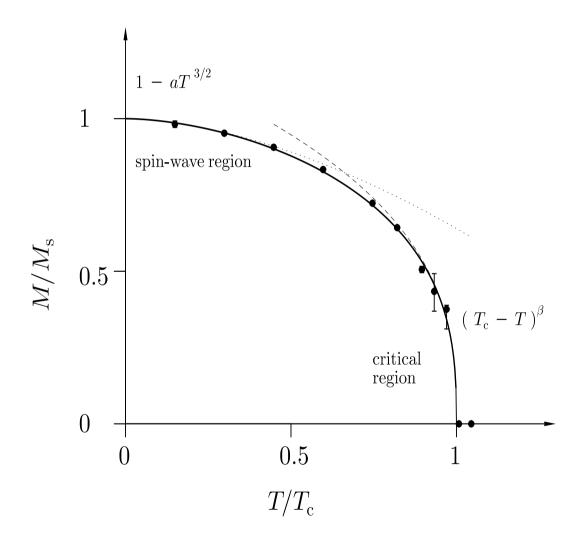
$$\nu = \nu_0 \left[1 - \left(\frac{T}{T_c}\right)^{\alpha} \right]^{\beta}$$

Close to the transition

$$\nu \approx \nu_0 \alpha^\beta \left[1 - \frac{T}{T_{\rm c}} \right]^\beta$$

Close to zero temp
$$\nu \approx \nu_0 \left[1 - \beta \left(\frac{T}{T_c} \right)^{\alpha} \right]$$

Excitations of a magnet: Spin waves



How to fit your precession data

$$\nu = \nu_0 \left[1 - \left(\frac{T}{T_{\rm c}}\right)^{\alpha} \right]^{\beta}$$

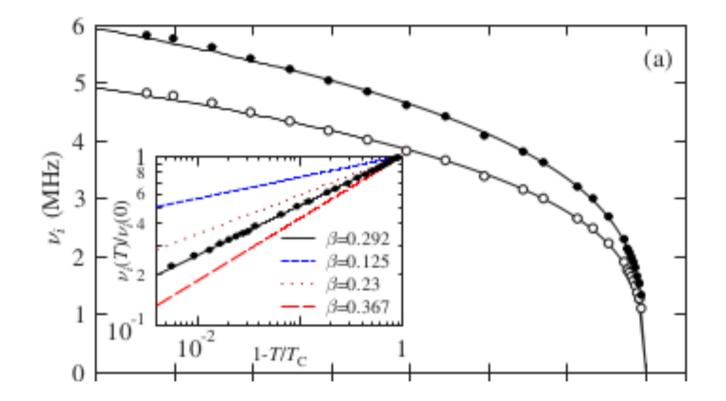
Close to the transition

$$\nu \approx \nu_0 \alpha^\beta \left[1 - \frac{T}{T_{\rm c}} \right]^\beta$$

$$\nu \approx \nu_0 \left[1 - \beta \left(\frac{T}{T_{\rm c}} \right)^{\alpha} \right]$$

Close to zero

Scaling plots

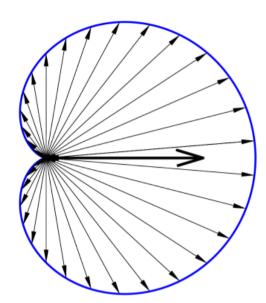


Example: Cs₂AgF₄

Phys Rev B 75, 220408 (2007)

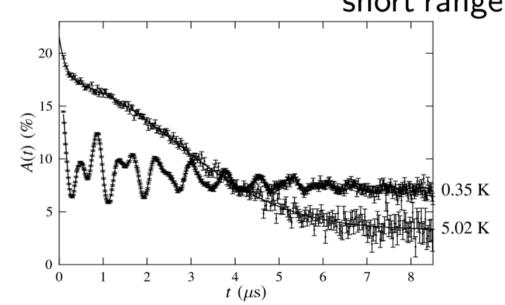
Muons as a probe of magnetism

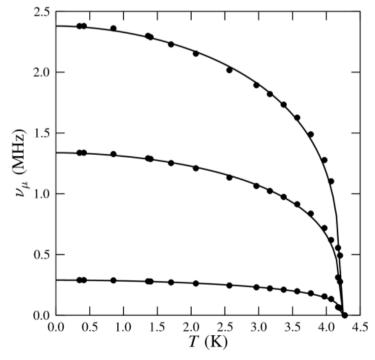
- Microscopic: sensitive to local effects
- Sensitive to very weak magnetism
- Work well in zero applied field
- One muon at a time \rightarrow ultra dilute!



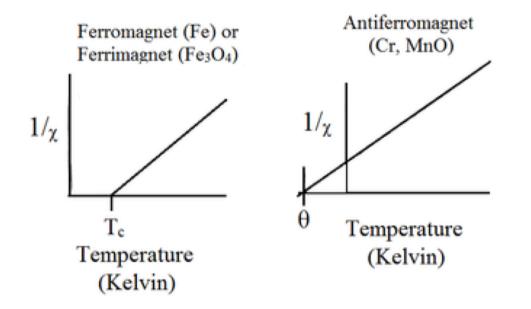
• μ^+ SR is great for: small moment magnetism

random magnetism short range effects





Usually we make susceptibility measurements before we make measurements with muons



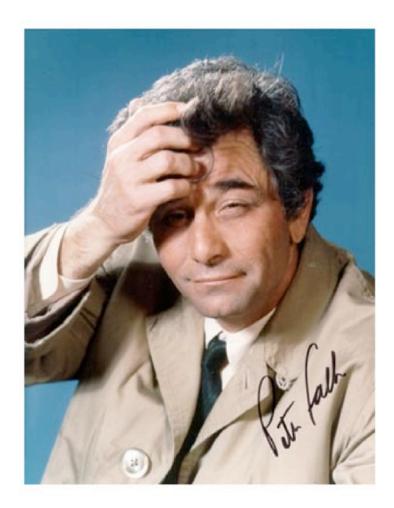
Uniformly weakly magnetic Non-magnetic, with strongly magnetic impurities



Susceptibility gives average information and therefore can give the same response for the situations sketched above

 $\underline{\mu}$ SR gives local information and therefore can distinguish between these two situations.

Case study One dimensional molecular magnets



Models of low dimensional magnetism

	D=1, Ising	D=2, XY	D = 3, Heisenberg
d = 1	no order	no order	no order
d = 2	order	no order	no order
d = 3	order	order	order

D = Dimension of the spins d = dimension of the lattice

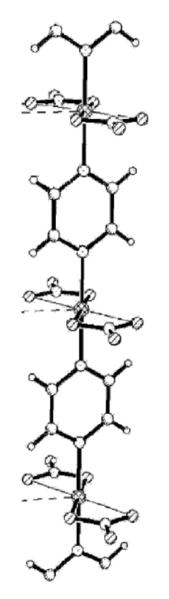
Coleman-Mermin-Wagner theorem forbids breaking a continuous symmetry for d=1 and 2 for T > 0

We can describe the physics with a deceptively simple looking equation

$$H = \sum_{ij} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

Anderson Basic notions in Condensed Matter Physics

$Cu(NO_3)_2(pyz)$



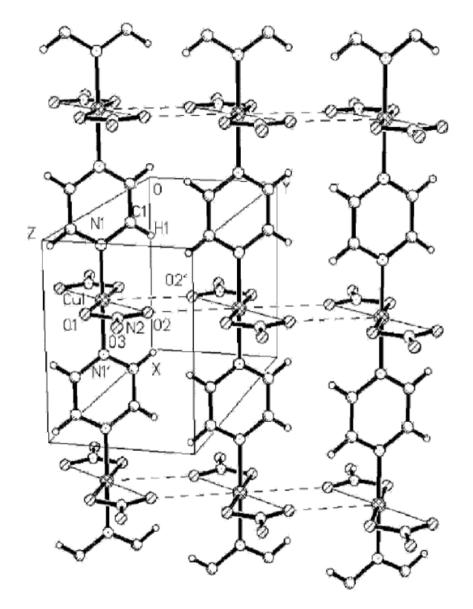
Magnetism in 1 dimension

 $S{=}1/2\ \text{Cu}^{2+}$ ions linked by pyz

1D Cu-(pyz)-Cu chains along a

A Santoro *et al.*, Acta. Cryst., **95** 5780 (1973) P R Hammar *et al.*, Phys. Rev. B, **59** 1008 (1999)

 $Cu(NO_3)_2(pyz)$



Magnetism in 1 dimension

 $S{=}1/2\ \text{Cu}^{2+}$ ions linked by pyz

1D Cu-(pyz)-Cu chains along a

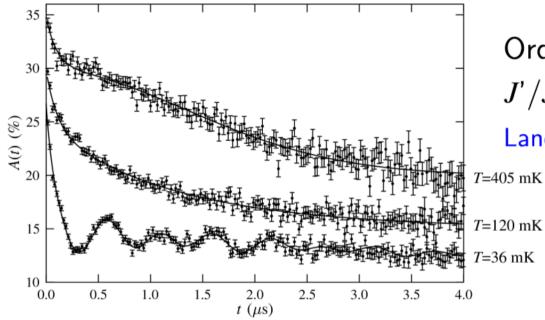
High field magnetization and specific heat give $|J|/k_{\rm B}=10.3$ K

No evidence of magnetic order down to 70 mK

A Santoro *et al.*, Acta. Cryst., **95** 5780 (1973) P R Hammar *et al.*, Phys. Rev. B, **59** 1008 (1999)

Molecular magnets: muons are unique!

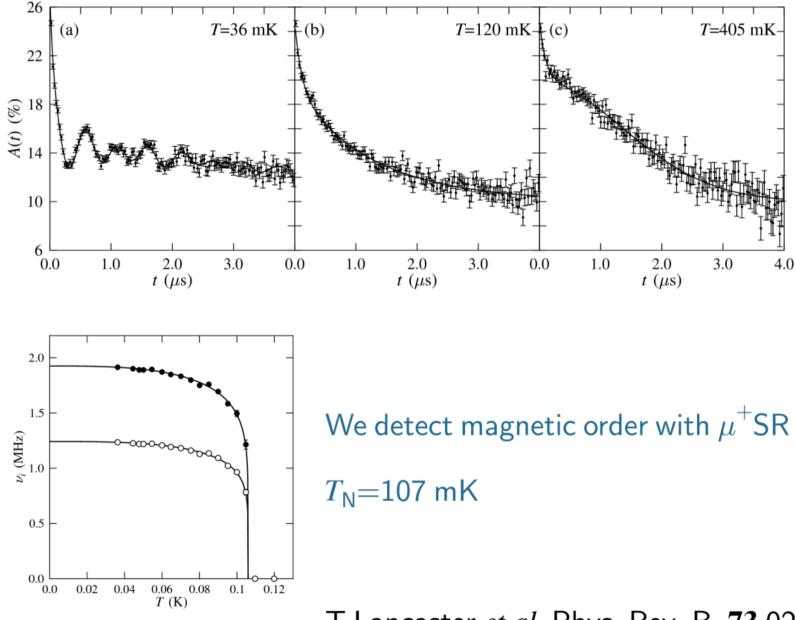
Observation of magnetic order - invisible to other techniques



Order observed in CuPzN with T_N =107 mK J'/J=4.4 ×10⁻³

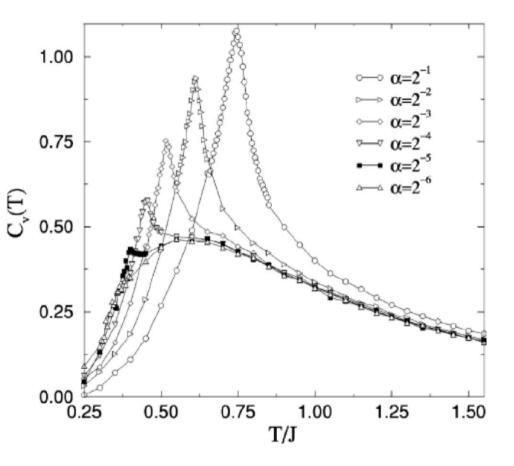
Lancaster et al. Phys. Rev. B, 73 020410(R) (2006)

$Cu(NO_3)_2(pyz)$ μ^+SR results



T Lancaster et al. Phys. Rev. B, 73 020410 (2006)

The problem with finding T_N in low-d systems



Stochastic series QMC simulations say

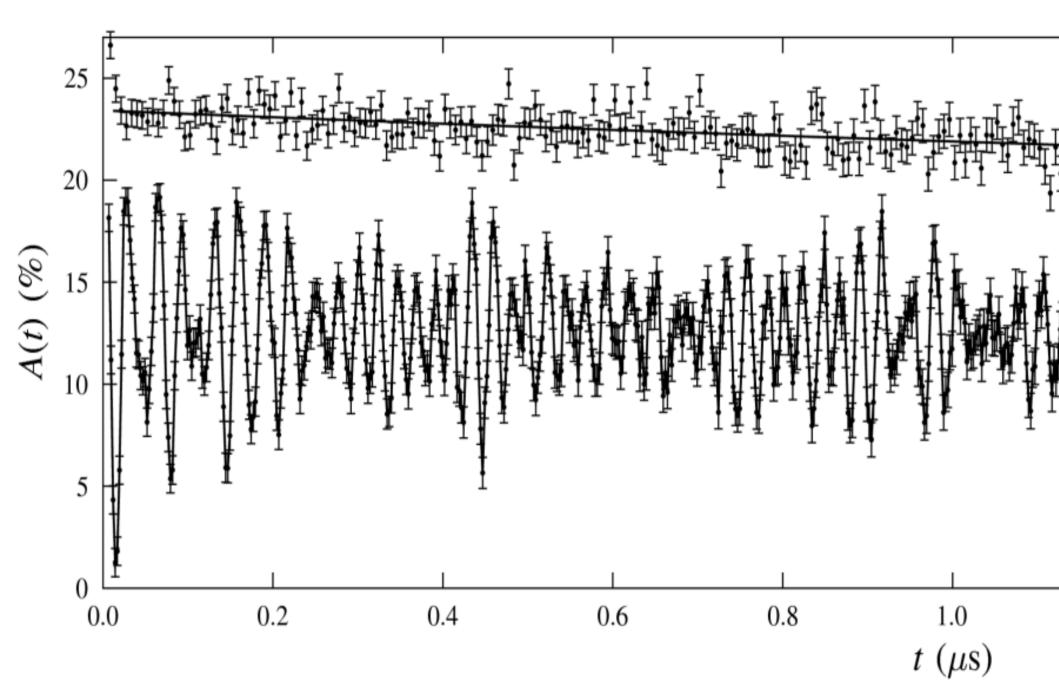
The anomaly in C_v decreases with decreasing α

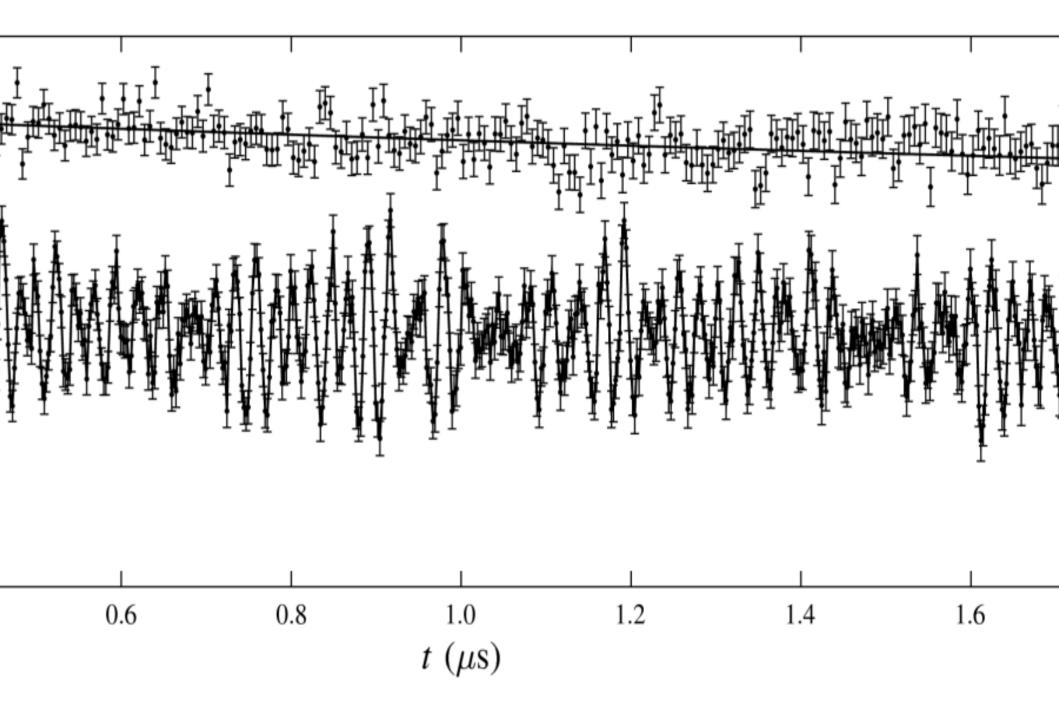
This is due to correlations above T_N (ΔS at T_N is therefore reduced)

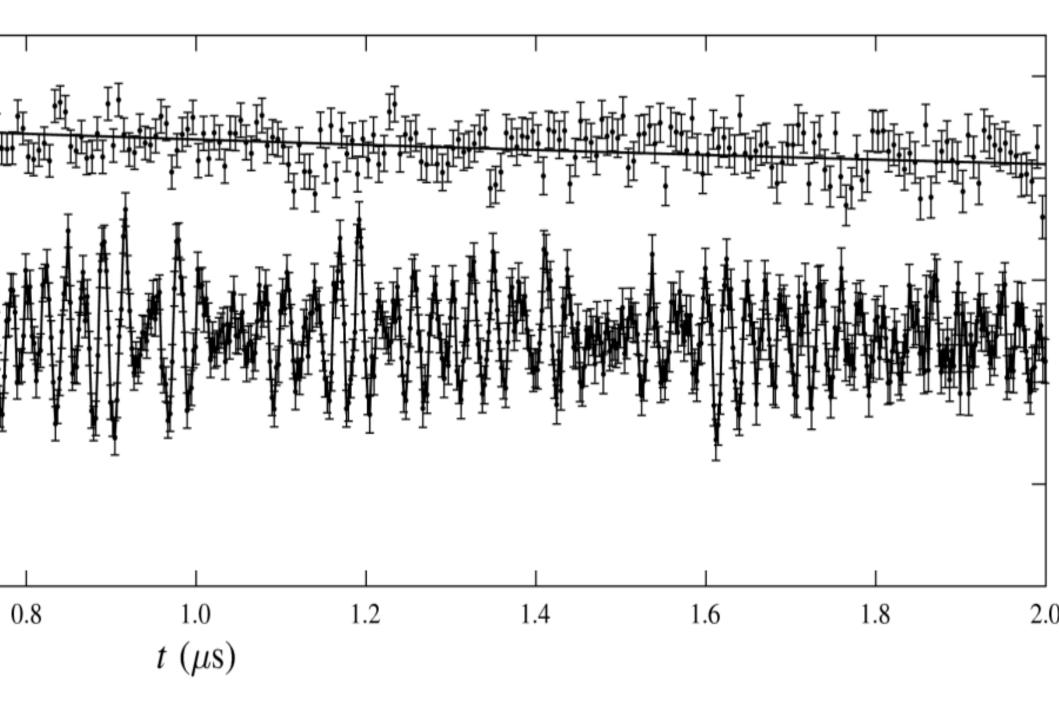
Other measurements made difficult by the small magnetic moment in anisotropic systems

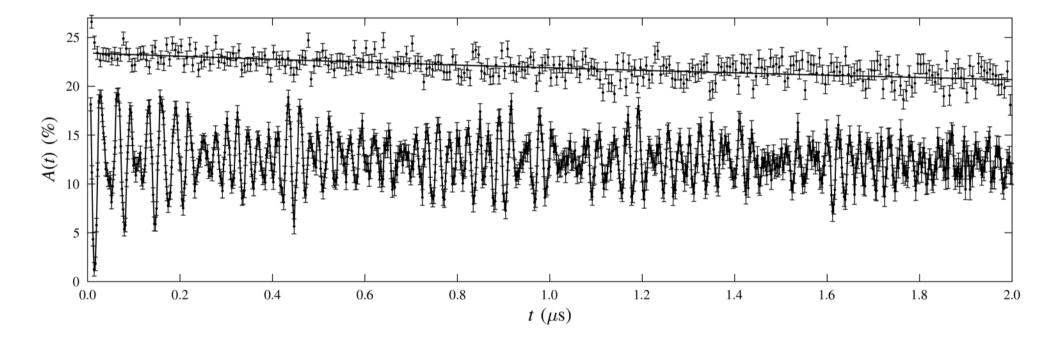
P Sengupta et al. Phys Rev B 68 94423 (2003)

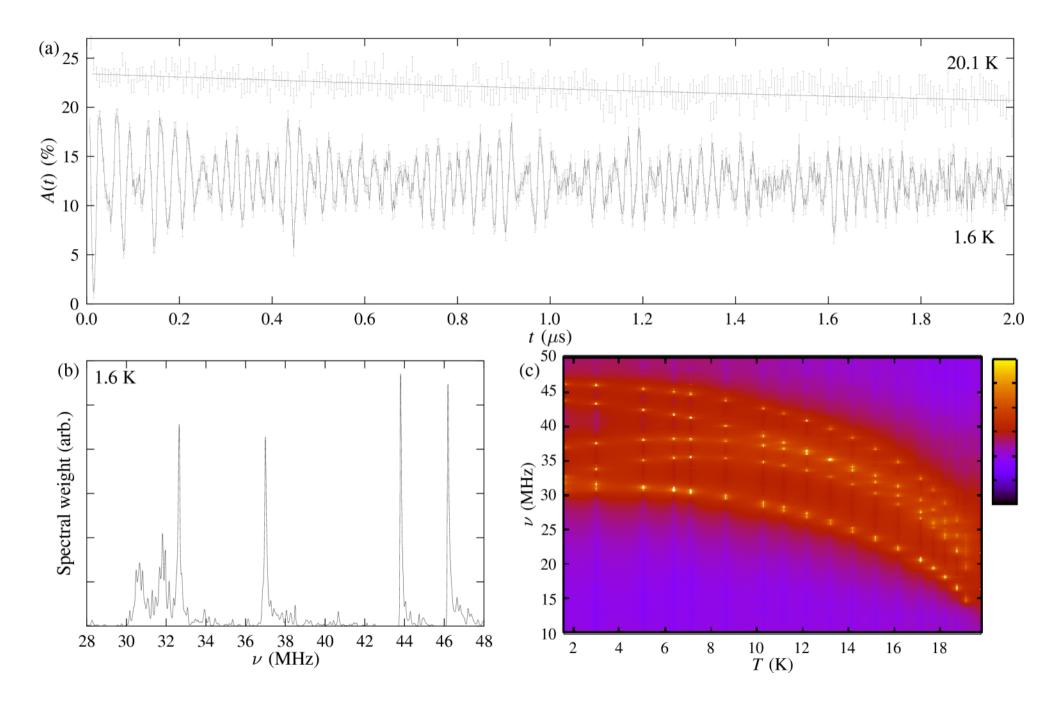
The most beautiful magnetic spectrum ever measured?



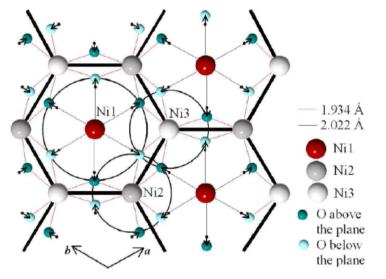


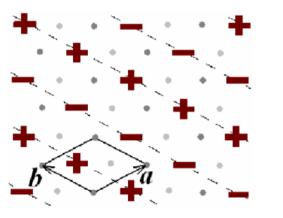


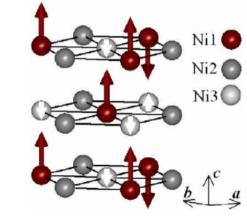


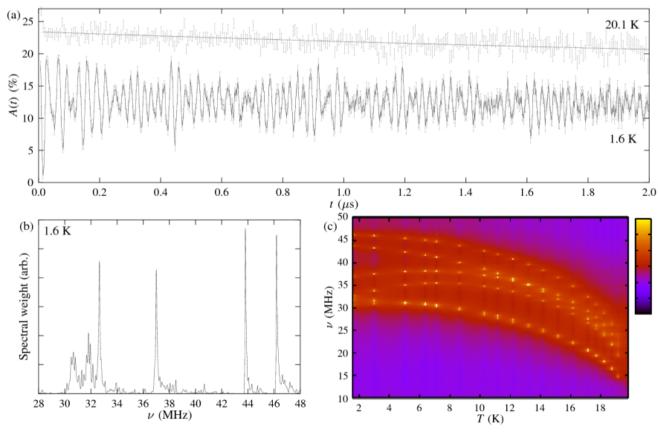


AgNiO₂: a new charge ordered state of matter?







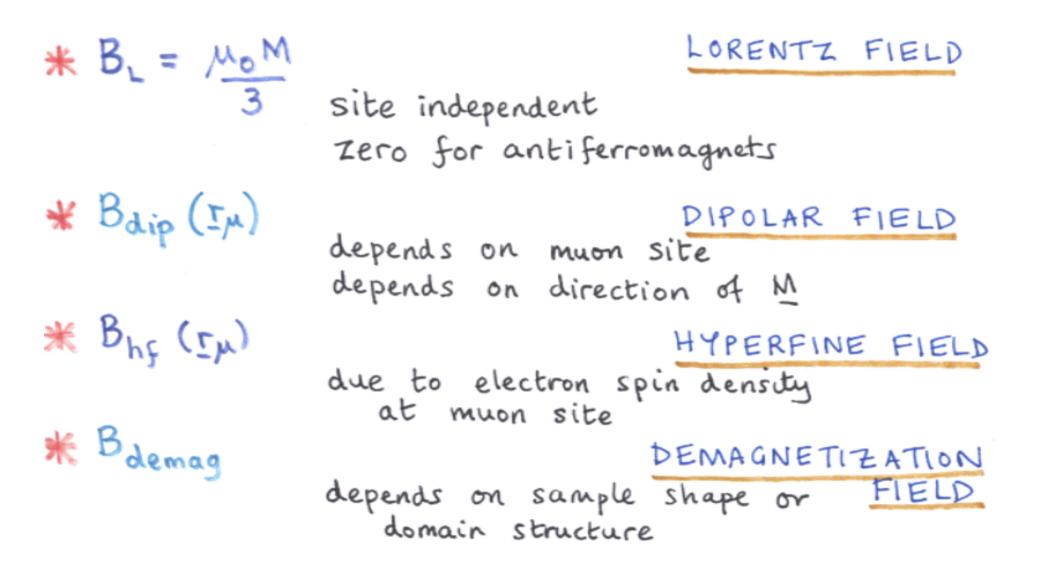


Orbital degeneracy lifted via a charge ordering mechanism This gives rise to a well defined magnetic structure Muons see this, but show an

anomalous T dependence

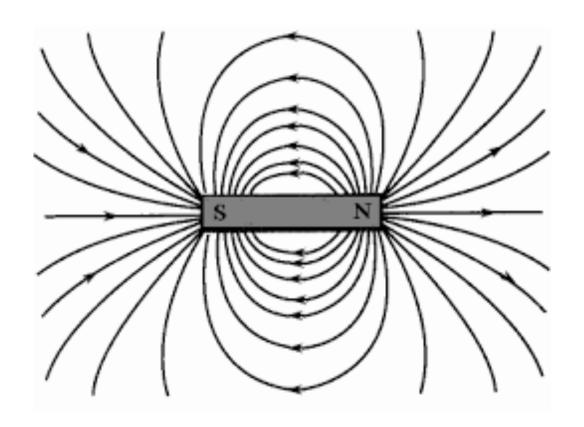
Lancaster *et al.*, PRL **100** 017206 (2008)

What on earth are we measuring?



Dipole field

$$\boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \left[\frac{3(\boldsymbol{m} \cdot \boldsymbol{r})\boldsymbol{r}}{r^5} - \frac{\boldsymbol{m}}{r^3} \right].$$



Dipole field

$$\boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \left[\frac{3(\boldsymbol{m} \cdot \boldsymbol{r})\boldsymbol{r}}{r^5} - \frac{\boldsymbol{m}}{r^3} \right].$$

Dipole field

$$\boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \left[\frac{3(\boldsymbol{m} \cdot \boldsymbol{r})\boldsymbol{r}}{r^5} - \frac{\boldsymbol{m}}{r^3} \right].$$

$$\boldsymbol{B}(\boldsymbol{r}) = \hat{\boldsymbol{D}}(\boldsymbol{r})\boldsymbol{m},$$

$$\hat{D}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \begin{pmatrix} -\frac{1}{r^3} + \frac{3r_x^2}{r^5} & \frac{3r_xr_y}{r^5} & \frac{3r_xr_z}{r^5} \\ \frac{3r_yr_x}{r^5} & -\frac{1}{r^3} + \frac{3r_y^2}{r^5} & \frac{3r_yr_z}{r^5} \\ \frac{3r_zr_x}{r^5} & \frac{3r_zr_y}{r^5} & -\frac{1}{r^3} + \frac{3r_z^2}{r^5} \end{pmatrix}$$

٠

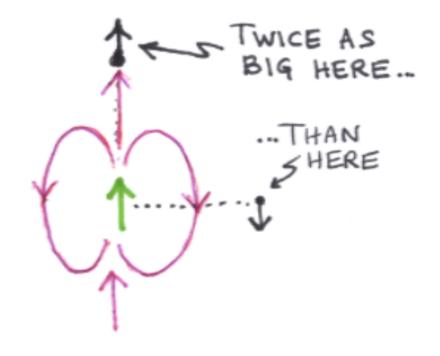
Dipole field: example 1: muon separated from a moment along *z*

$$\boldsymbol{D} = \frac{\mu_0}{4\pi} \begin{pmatrix} -\frac{1}{z^3} & 0 & 0\\ 0 & -\frac{1}{z^3} & 0\\ 0 & 0 & \frac{2}{z^3} \end{pmatrix}$$

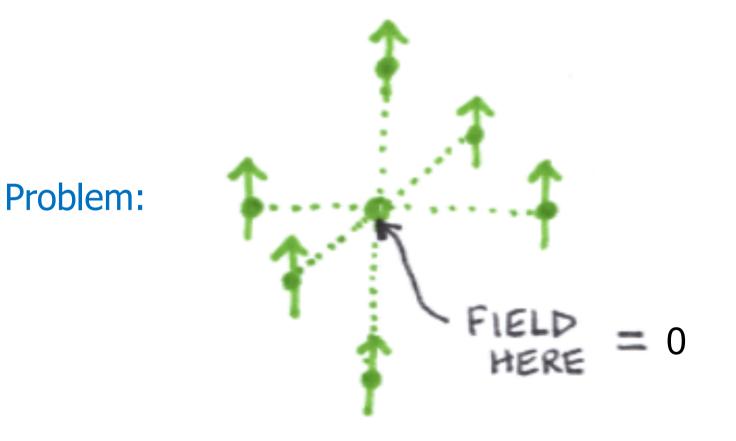
$$\boldsymbol{B}(0,0,z) = \frac{\mu_0}{4\pi} \left(-\frac{m_x}{z^3}, -\frac{m_y}{z^3}, \frac{2m_z}{z^3} \right)$$

Dipole field: example 2, muon separated along x

 $D = \frac{\mu_0}{4\pi} \begin{pmatrix} \frac{2}{x^3} & 0 & 0\\ 0 & -\frac{1}{x^3} & 0\\ 0 & 0 & -\frac{1}{x} \end{pmatrix}$



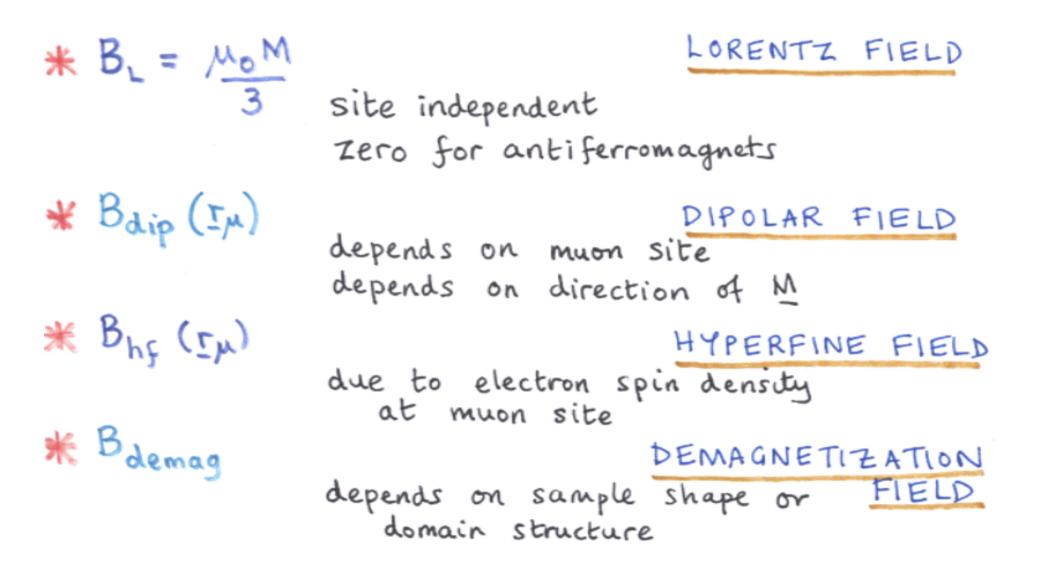
Dipole field: example 3



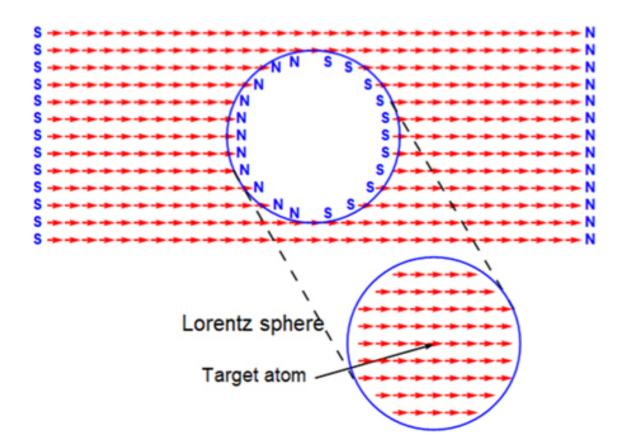
Dipolar fields

38 63 73 68 6 73 68 🔁 43 33 0 73 63 38 3343 68 7 63 68 25 1.5 2.0 21 0.07 0.02 63 - 673 68 43 43 68 20 68 5 10 1.5 2.0 0.06 0.01

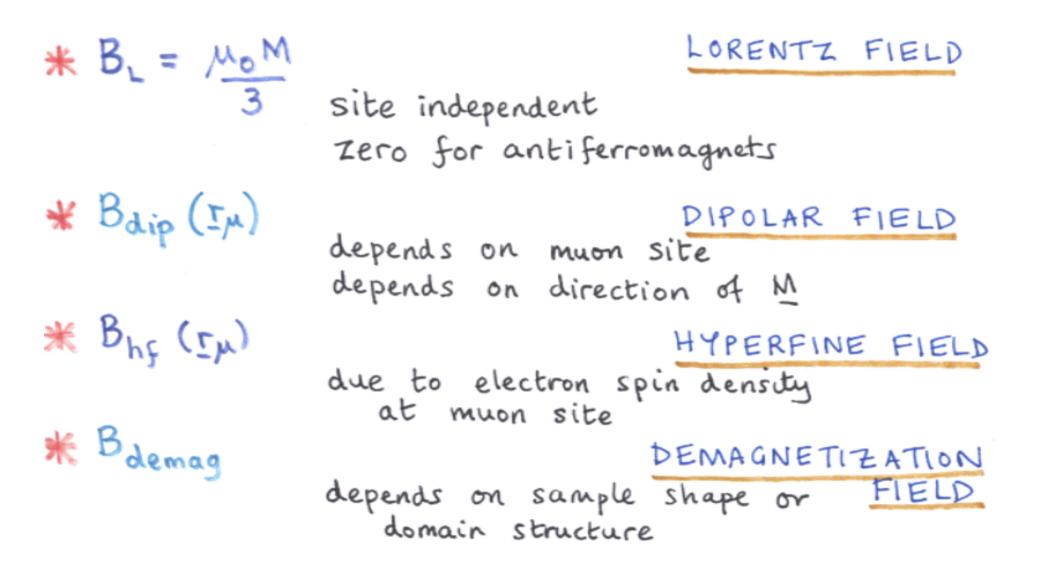
Dipolar fields can be calculated



Lorentz field



Spins outside the sphere lead to an extra contribution $\boldsymbol{B} = \mu_0 \boldsymbol{M}/3$



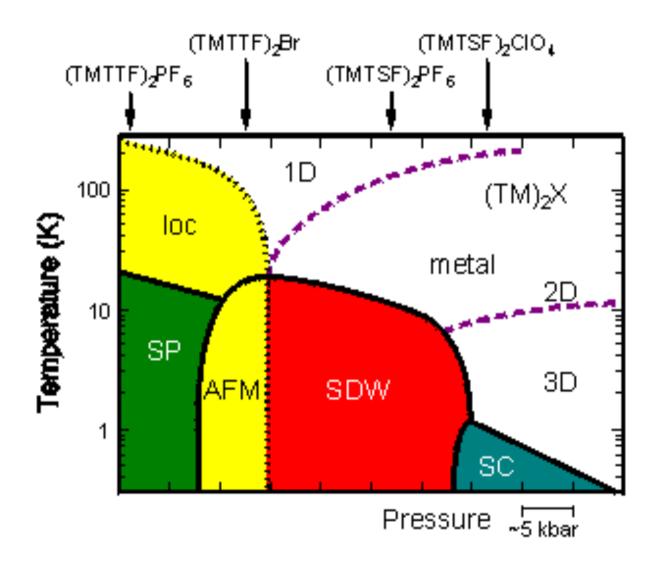
Case study: Incommensurate magnetic order

More on relaxation functions $A(t) \sim \sum A_i \cos(\gamma_\mu |B_i|t)$ i i muon sites field at site In general $A(t) \sim \int p(B) \cos(\gamma_{\mu} B t) dB$

Stacks of TMTSF molecules \Rightarrow 1D chains

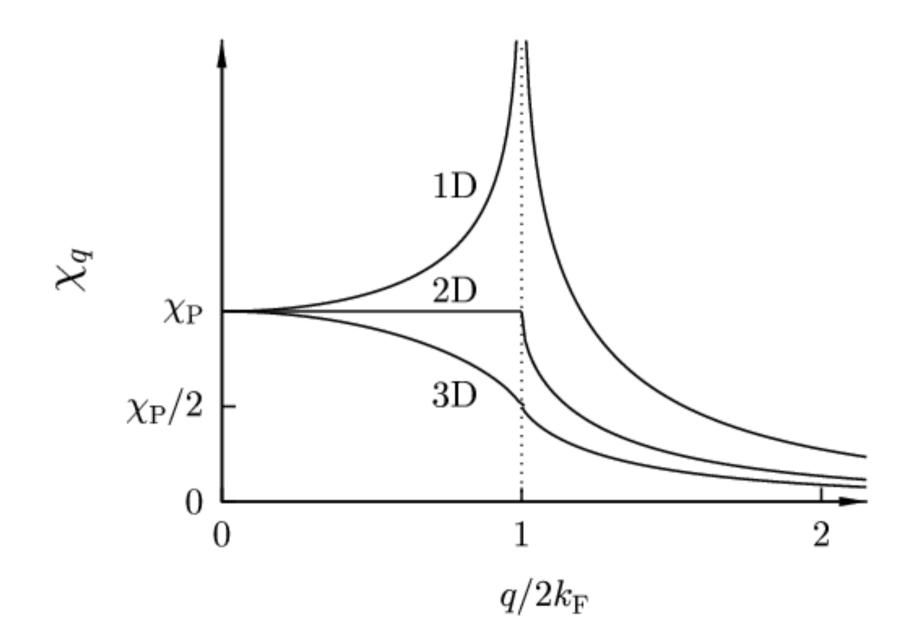
TMTSF salts

Very rich phase diagram

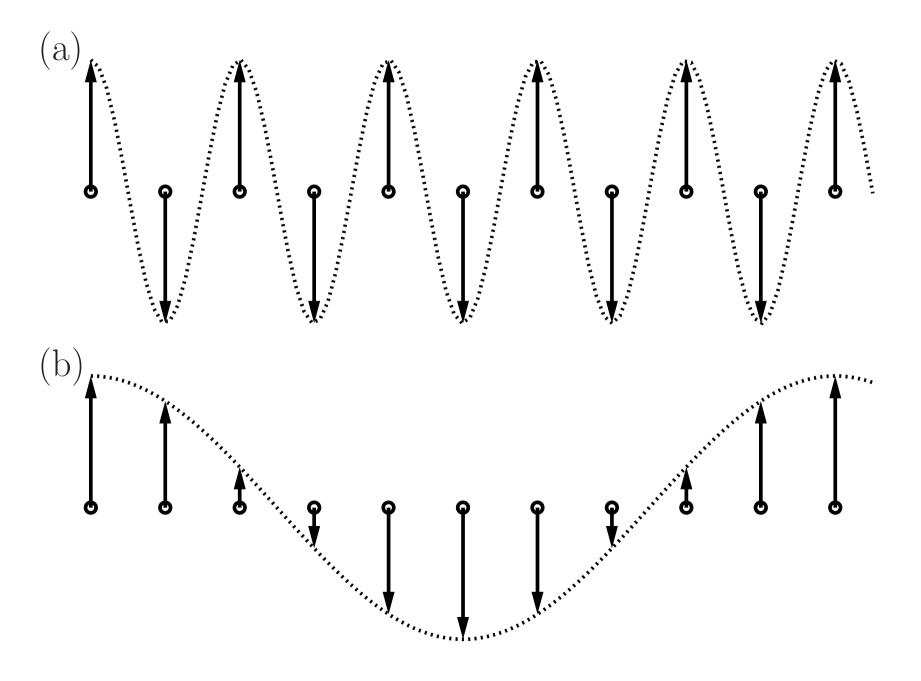


Paul Chaikin (1945 --)

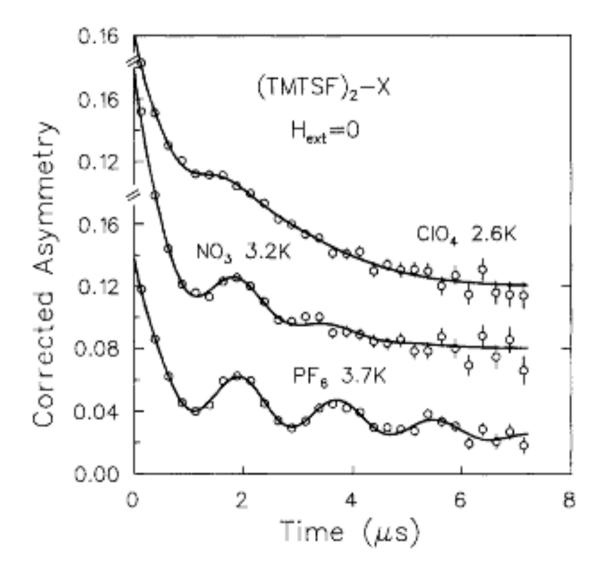
1D electron gas unstable to SDW formation



Spin-density wave

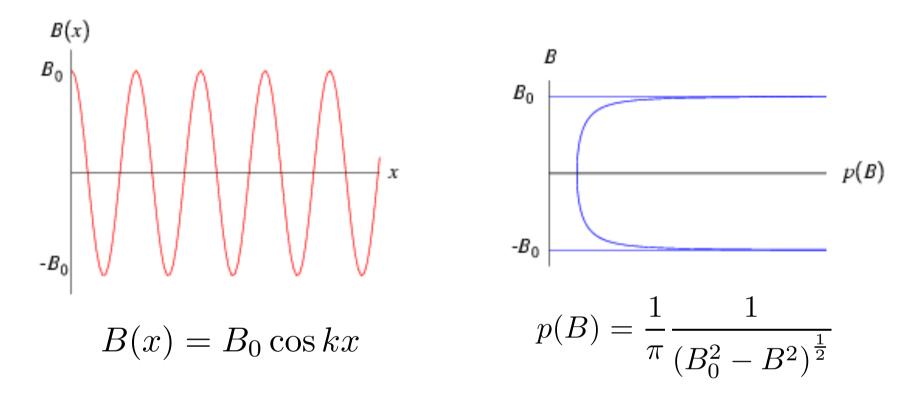


Muon data measured on TMTSF_2X



L.P. Le et al, PRB 48 7284 (1993)

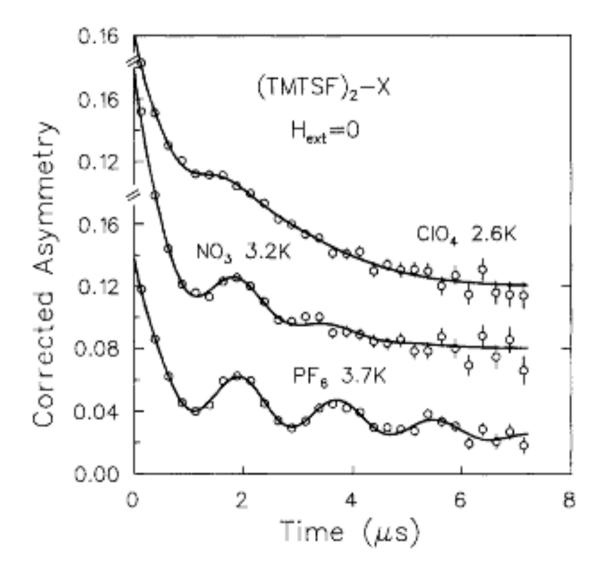
Spin density wave system: μ^+ SR response



$$P_z(t) = \frac{1}{\pi} \int_{B=-B_0}^{B_0} \mathrm{d}B \frac{\cos(\gamma_\mu B t)}{\left(B_0^2 - B^2\right)^{\frac{1}{2}}} = J_0(\gamma_\mu B_0 t)$$

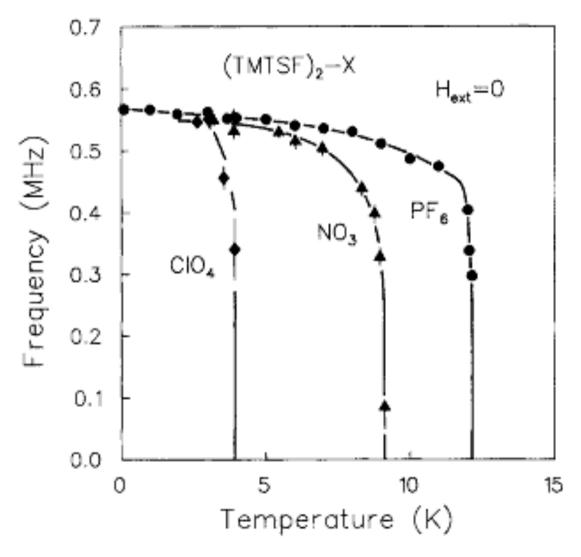
For large argument $J_0(\gamma_\mu B_0 t) \approx \left(\frac{2}{\pi \gamma_\mu B_0 t}\right) \cos\left(\gamma_\mu B t - \frac{\pi}{4}\right)$

Muon data measured on TMTSF_2X



L.P. Le et al, PRB 48 7284 (1993)

SDW phase in $(TMTSF)_2 X$



L.P. Le et al, PRB **48** 7284 (1993)

Summary

- Static magnetic order can lead to oscillations
- Oscillation frequency is an effective order parameter for the system
- We are sensitive to local, dipolar fields
- More complex field distributions lead to more complicated oscillatory spectra