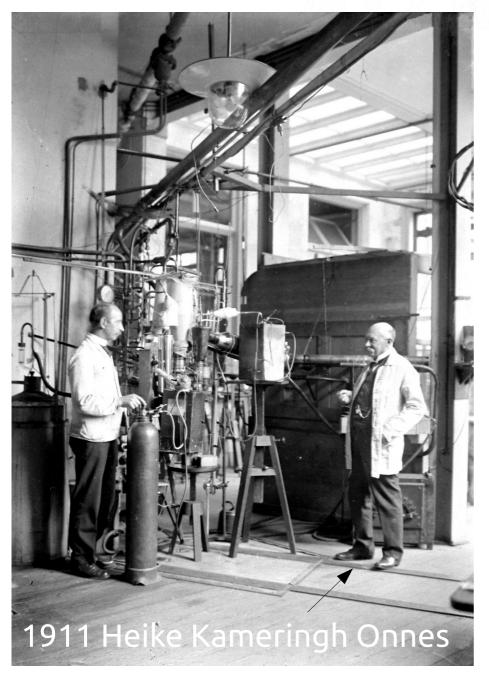
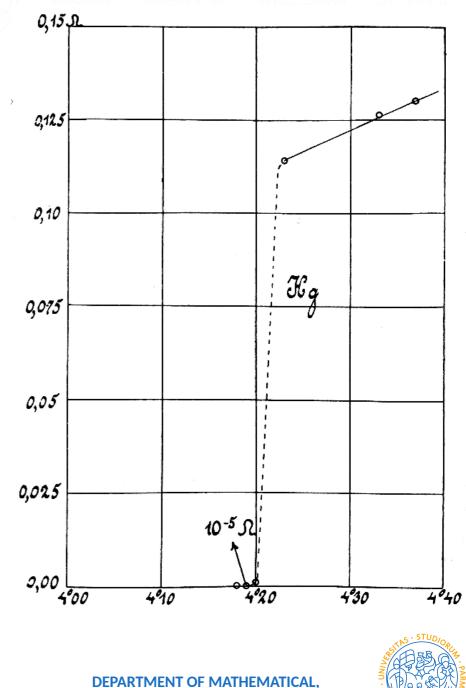
Muons in superconductors

- Lesson I the land we are exploring
 - Introduction: superconductivity, a story of three length-scales
 - London equations and the penetration depth
 - Ginzburg Landau equations and the coherence length
- Lesson II the workhorse of μ SR
 - The Abrikosov flux lattice
 - Muon determination of the penetration depth
 - Conventional and unconventional superconductivity: a glance
 - BCS: the gap and its temperature dependence
- Lesson III material science
 - Clean vs. dirty superconductors
 - A phase diagram for superconducting materials
 - Towards atomic scale coherence: nanoscopic coexistence
 - Triplet superconductivity, topological superconductivity (?)

DEPARTMENT OF MATHEMATICAL


PHYSICAL & COMPUTER SCIENCES, PARMA


Muons in superconductors

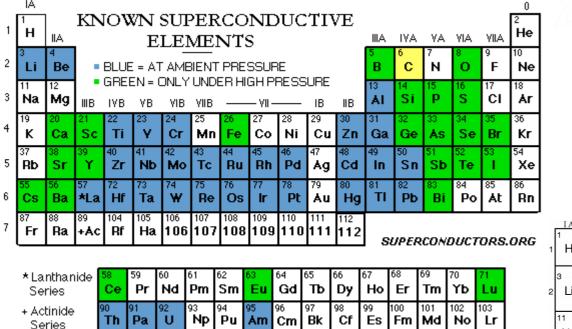
- Lesson I the land we are exploring
 - Introduction: superconductivity, a story of three length-scales
 - London equations and the penetration depth
 - Ginzburg Landau equations and the coherence length
- Lesson II the workhorse of μSR
 - The Abrikosov flux lattice
 - Muon determination of the penetration depth
 - Conventional and unconventional superconductivity: a glance
 - BCS: the gap and its temperature dependence
- Lesson III the hotter topics
 - Clean vs. dirty superconductors, extreme type II
 - A phase diagram for superconducting materials
 - Towards atomic scale coherence: nanoscopic coexistence
 - Triplet superconductivity, topological superconductivity (?)

Introduction: Superconductivity

19/08/2019

Advanced School on Muon Spectroscopy

³ PHYSICAL & COMPUTER SCIENCES, PARMA


Elemental superconductors

I	<u>IA</u>	ПА 1	II B	IV B	V B	VI B	VII B	VII	VII	VII	ΙB	IIB	III A	IV A	VA	VIA	VII A	0
1	Н						Leg	gend							He			
2	з Li	4 Be 0.026			Type I Type		5 B	⁶ C	7 N	8 <i>O</i>	9 F	10 Ne						
3	¹¹ Na	¹² Mg		Superconductor at ambient presssure Superconductor under high pressure									13 Al 1.175	¹⁴ Si	15 P	S	17 Cl	¹⁸ Ar
4	¹⁹ K	²⁰ Ca	21 Sc	22 Ti 0.40	23 V 5.40	²⁴ Cr	²⁵ Mn	²⁶ Fe	27 Co	²⁸ Ni	²⁹ Cu	30 Zn 0.85		³² Ge	As	Se	³⁵ Br	³⁶ Kr
5	³⁷ Rb	³⁸ Sr	39 Y	40 Zr 0.61	41 Nb 9.25	42 Mo 0.912	43 TC 7.80	44 Ru 0.49	45 Rh .0003	⁴⁶ Pd	47 Ag	48 Cd 0.517	49 In 3.4	50 Sn 3.72	51 Sb	52 Te	53 	⁵⁴ Xe
6	55 <i>Cs</i>	⁵⁶ Ba	57 La 4.9	72 Hf 0.128	73 Ta 4.47	74 W .0154	75 Re 1.697	76 Os 0.66	77 Ir 0.113	78 Pt .0019	⁷⁹ Au	80 Hg 4.15	81 TI 1.70	82 Pb 7.2	83 Bi	⁸⁴ Po	85 At	⁸⁶ Rn
7	⁸⁷ Fr	⁸⁸ Ra	⁸⁹ Ac															
Lanthanide Series				⁵⁸ <i>Ce</i>	⁵⁹ Pr	60 Nd	⁶¹ Pm	⁶² Sm	⁶³ Eu	64 Gd 1.083	⁶⁵ Tb	⁶⁶ Dy	⁶⁷ Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	71 Lu 0.100	
Actinide Series				90 Th 1.38	91 Pa 1.4	92 U .6/1.8	93 Np	⁹⁴ Pu	95 Am 1.1/.79	96 Cm	⁹⁷ Bk	98 Cf	⁹⁹ Es	100 Fm	¹⁰¹ Md	102 No	103 Lr	

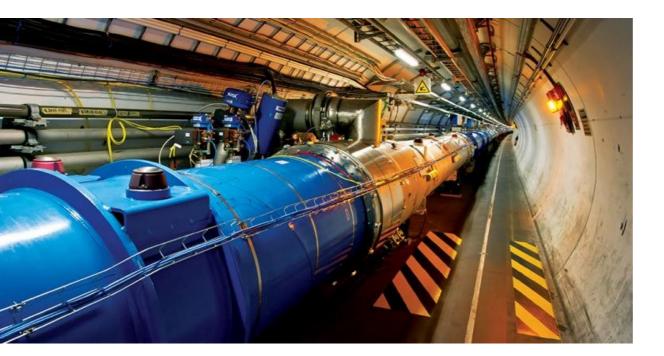
4 DEPARTMENT OF MATHEMATICAL, PHYSICAL & COMPUTER SCIENCES, PARMA

Elemental superconductors

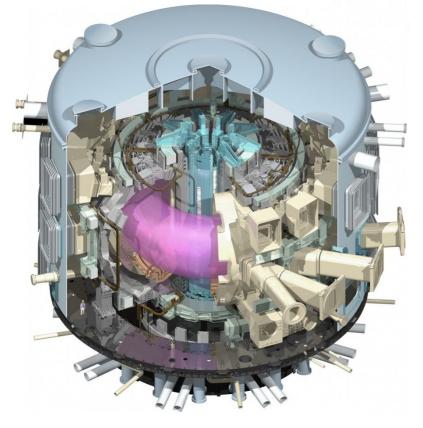
http://www.superconductors.org/Type1.htm

Different sources: different shades of optimism

	1 I A	IIA	II B	IV B	VВ	VI B	VII B	VII	VII	VII	ΙB	IIB	III A	IV A	V A	VIA	VIIA	0
1	н						Leg	gend							Не			
2	з Li	4 Be 0.026		Atomic Number Symbol T _o (K) Type I									₅ B	⁶ C	7 N	⁸ O	9 F	10 Ne
з	11 Na	¹² Mg		Superconductor at ambient presssure Superconductor under high pressure									13 Al 1.175	¹⁴ Si	15 P	16 S	17 CI	¹⁸ Ar
4	19 K	²⁰ Ca	21 Sc	22 Ti 0.40	V	²⁴ Cr	²⁵ Mn	²⁶ Fe	27 Co	²⁸ Ni	²⁹ Cu	30 Zn 0.85	31 Ga 1.10	³² Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
5	³⁷ Rb	³⁸ Sr	39 Y	40 Zr 0.61	41 Nb 9.25	42 Mo 0.912	43 TC 7.80	44 Ru 0.49	45 Rh .0003	⁴⁶ Pd	47 Ag	48 Cd 0.517	49 In 3.4	50 Sn 3.72	51 Sb	52 Te	53 	⁵⁴ Xe
6	55 <i>Cs</i>	⁵⁶ Ba	57 La 4.9	72 Hf 0.128	73 Ta 4.47	74 W .0154	75 Re 1.697	76 Os 0.66	77 Ir 0.113	78 Pt .0019	⁷⁹ Au	80 Hg 4.15	81 TI 1.70	82 Pb 7.2	83 Bi	⁸⁴ Po	85 At	⁸⁶ Rn
7	⁸⁷ Fr	⁸⁸ Ra	⁸⁹ Ac															
	Lanth	nanide S	Series	⁵⁸ <i>Ce</i>	⁵⁹ Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	⁶³ Eu	64 Gd 1.083	⁶⁵ Tb	⁶⁶ Dy	⁶⁷ Ho	⁶⁸ Er	⁶⁹ Tm	70 Yb	71 Lu 0.100	
Actinide Series				90 Th 1.38	91 Pa 1.4	92 U .6/1.8	93 Np	⁹⁴ Pu	95 Am 1.1/.79	96 Cm	⁹⁷ Bk	98 Cf	⁹⁹ Es	¹⁰⁰ Fm	¹⁰¹ Md	102 No	¹⁰³ Lr	ſ


DEPARTMENT OF MATHEMATICAL, PHYSICAL & COMPUTER SCIENCES, PARMA

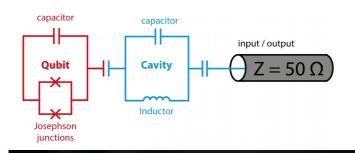
10 T conventional solenoid:5 000 A in 1600 turns5 MW homes in Abingdon

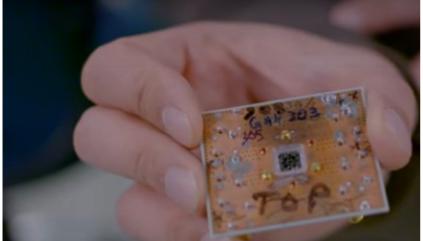


30 I liquid He/month

CERN LHC 1232 main dipole 392 quadrupole 6000 corrector magnets

ITER tokamak

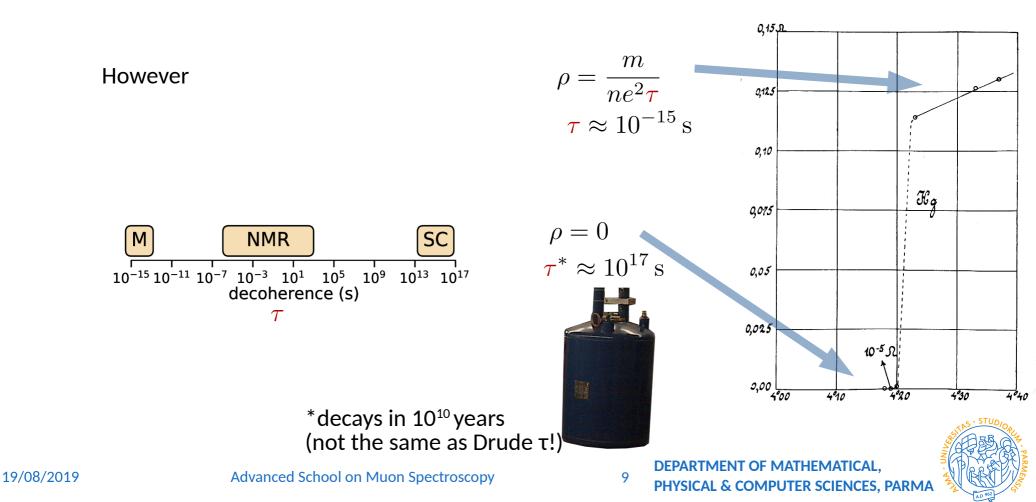

MRI

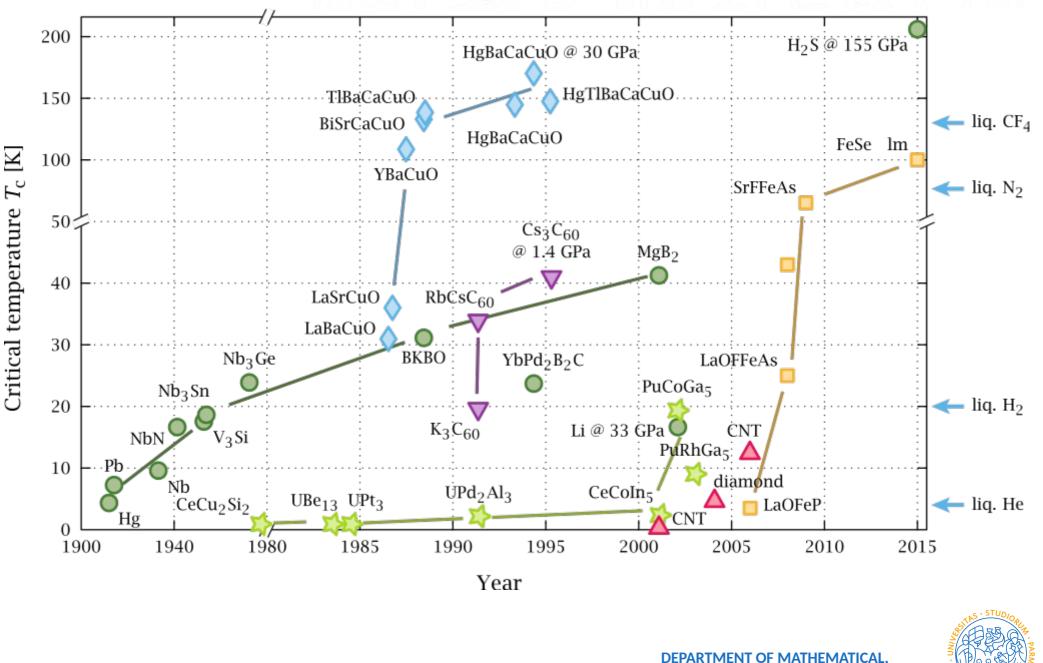

Advanced School on Muon Spectroscopy

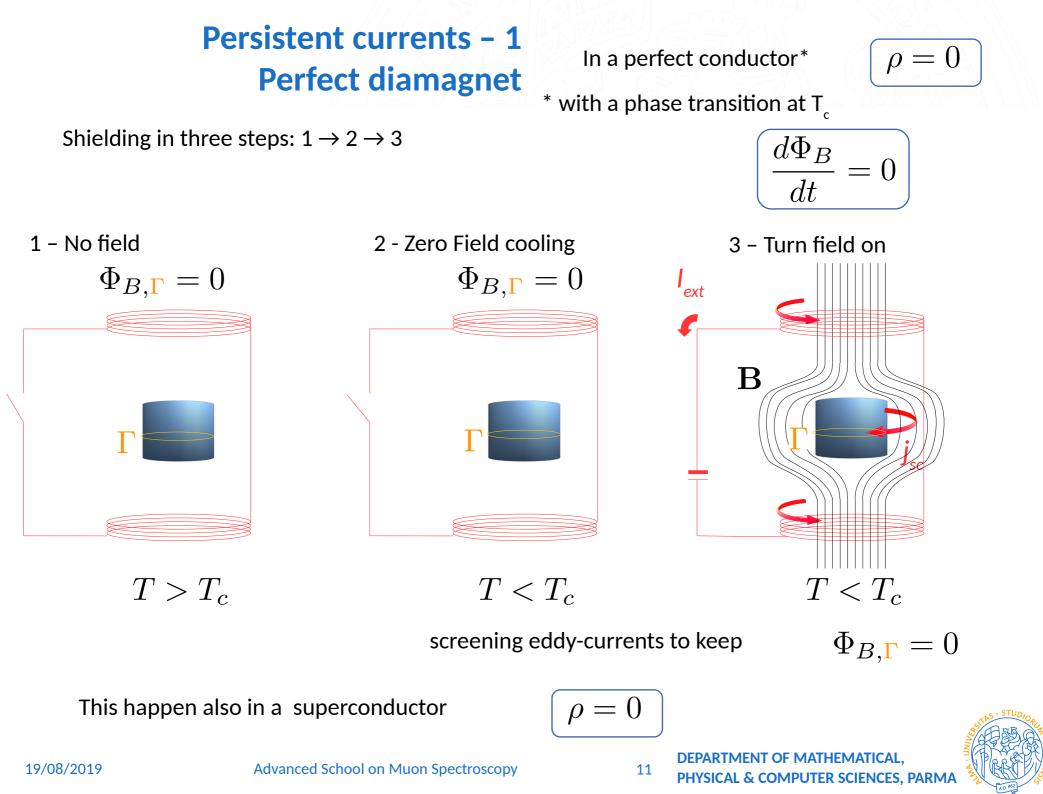
DEPARTMENT OF MATHEMATICAL, PHYSICAL & COMPUTER SCIENCES, PARMA

Quantum computation: transmons

A Tour of an IBM Q Lab

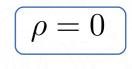

$$\left(|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \right)$$




DEPARTMENT OF MATHEMATICAL, PHYSICAL & COMPUTER SCIENCES, PARMA

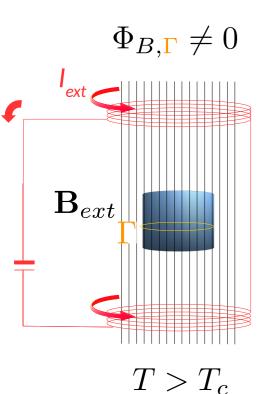
A rare example of macroscopic quantum coherent state (with superfluids) $|\psi
angle$

Also metals are an example of macroscopic quantum coherent state. $|{f k}
angle$



Persistent currents – 2 Perfect diamagnet

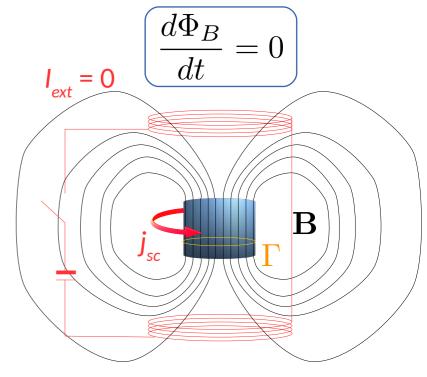
ext


 \mathbf{B}_{ext}

In a perfect conductor

Establishing a persistent currents in three steps: $1 \rightarrow 2 \rightarrow 3$

1 – Turn field on above T_c



2 – Field cooling

 $\Phi_{B,\Gamma} \neq 0$

 $T < T_c$

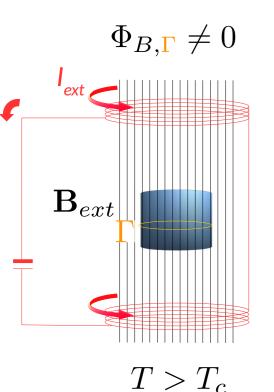
3 - Turn field off

 $T < T_c$

This does not happen in a superconductor

 $\Phi_{B,\Gamma} \neq 0$

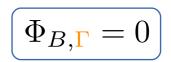
19/08/2019


DEPARTMENT OF MATHEMATICAL, PHYSICAL & COMPUTER SCIENCES, PARMA

Persistent currents - 4

Meissner-Ochsenfeld effec: $1 \rightarrow 2$

1 – Set field above T_c


2 - Field cooling

ext B $T < T_c$

Summary

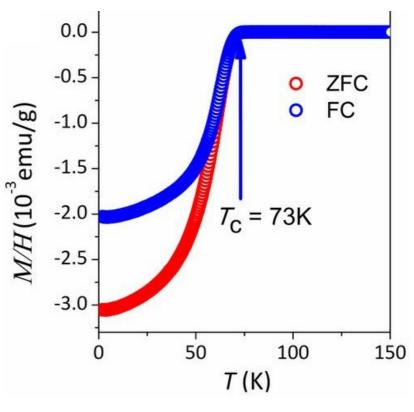
A superconductor in an external field **B**, both F cooling and ZF cooling, expels the flux $\Phi_{B,\Gamma}$

The flux is expelled, so the real rule is

This would **not** happen to a perfect conductor

19/08/2019

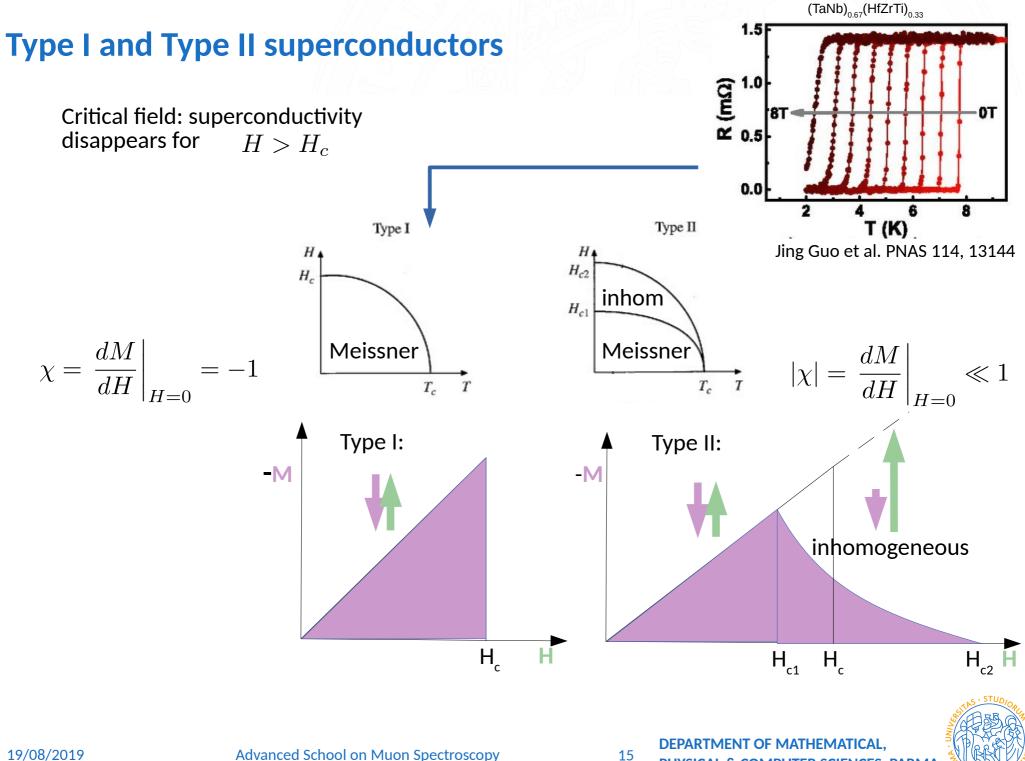
DEPARTMENT OF MATHEMATICAL, PHYSICAL & COMPUTER SCIENCES, PARMA


Field Cooling vs Zero Field Cooling

Ba₂CuO_{4-y}

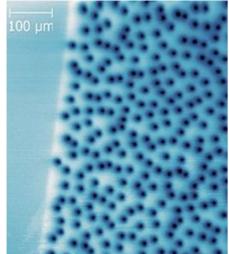
Negative M/H for ZFC is also the response of a perfect conductor

Negative M/H in FC is the signature of superconductivity

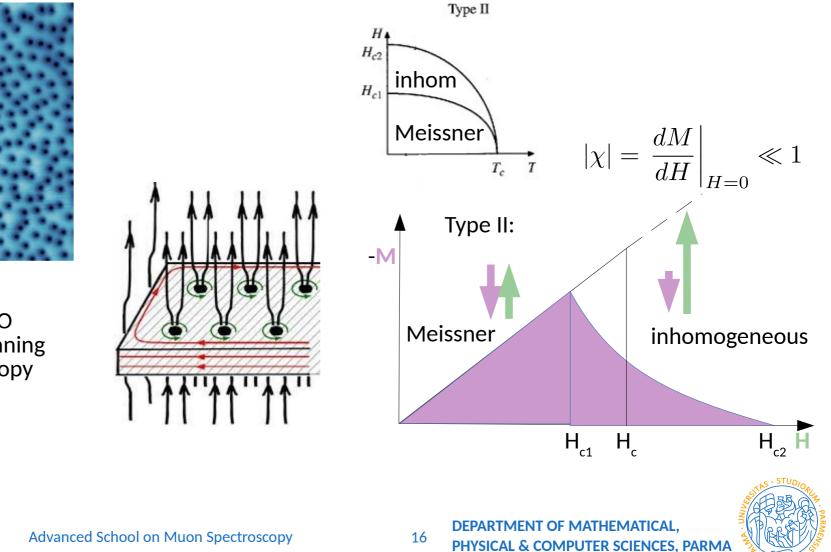

Extrinsic difference due to flux pinning

Zhao et al. PNAS 116 12156

19/08/2019



Advanced School on Muon Spectroscopy


PHYSICAL & COMPUTER SCIENCES, PARMA

Type I and Type II

What inhomogeneity for $H > H_{c1}$? (super)current vortices encircling quantized magnetic flux $\Phi_0 = \frac{h}{2e}$

vortices in YBCO imaged by scanning SQUID microscopy

Three length-scales

- London penetration depth
 - λ controls the magnetic field penetration
- Coherence length
 - $-\xi$ controls the quantum coherence of the ground state
- Mean free path
 - ℓ controls scattering

London equation

Sketch of deep argument on electron wavefunction:

• incoherent in normal Drude metal

$$\mathbf{J} = nq\mathbf{v}$$

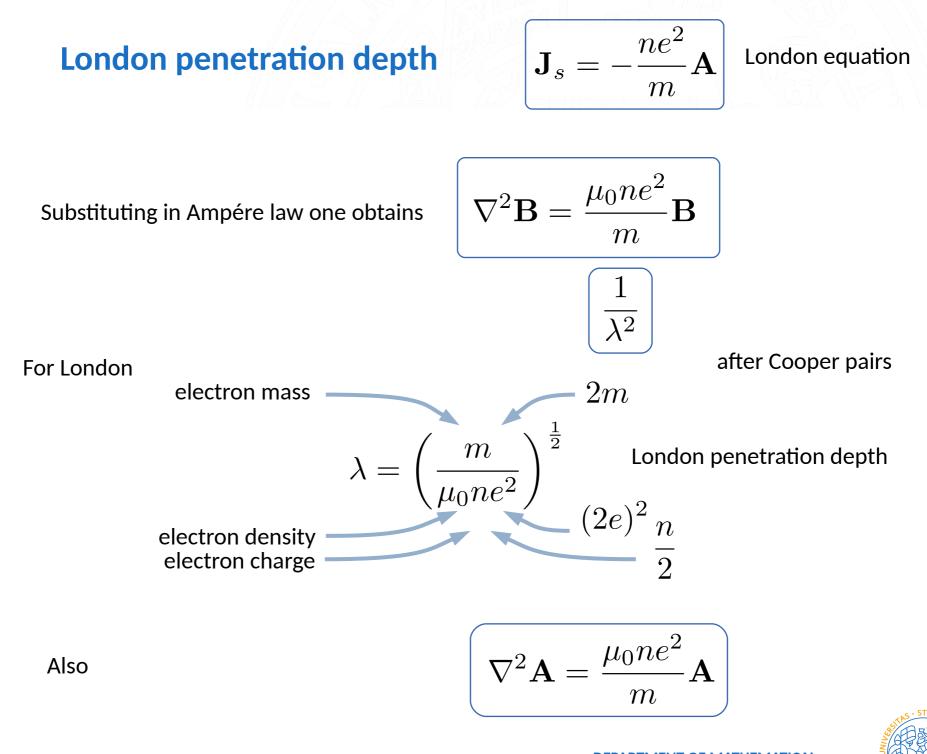
No power supply

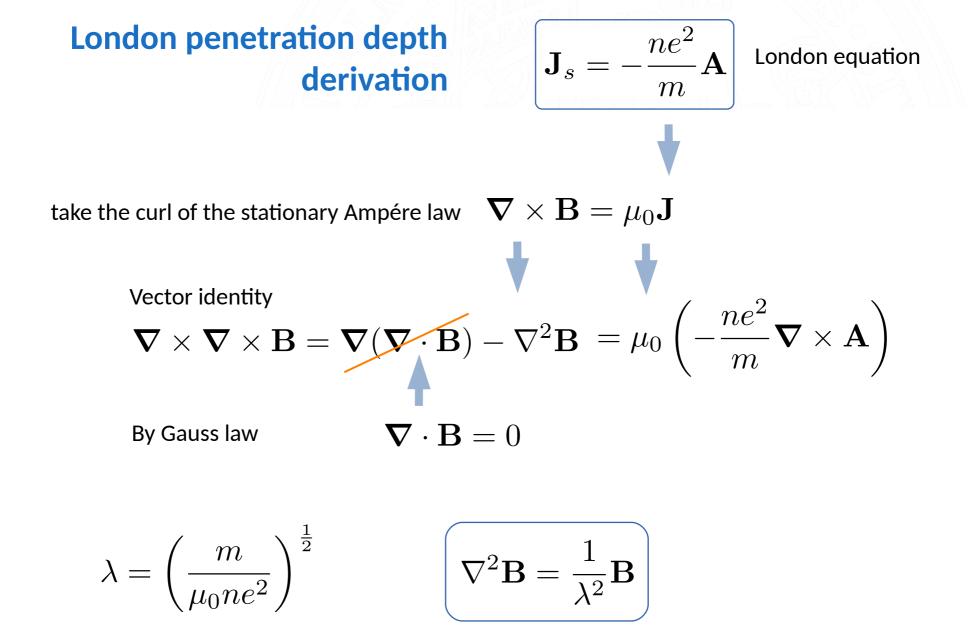
$$\langle \mathbf{p} \rangle = 0 \longrightarrow m \langle \mathbf{v} \rangle = 0 \longrightarrow \langle \mathbf{J} \rangle = 0$$

Superconducting state $\langle {f p}
angle = 0$ even after switching fields on.

Minimal substitution $m\mathbf{v} = \mathbf{p} - e\mathbf{A}$

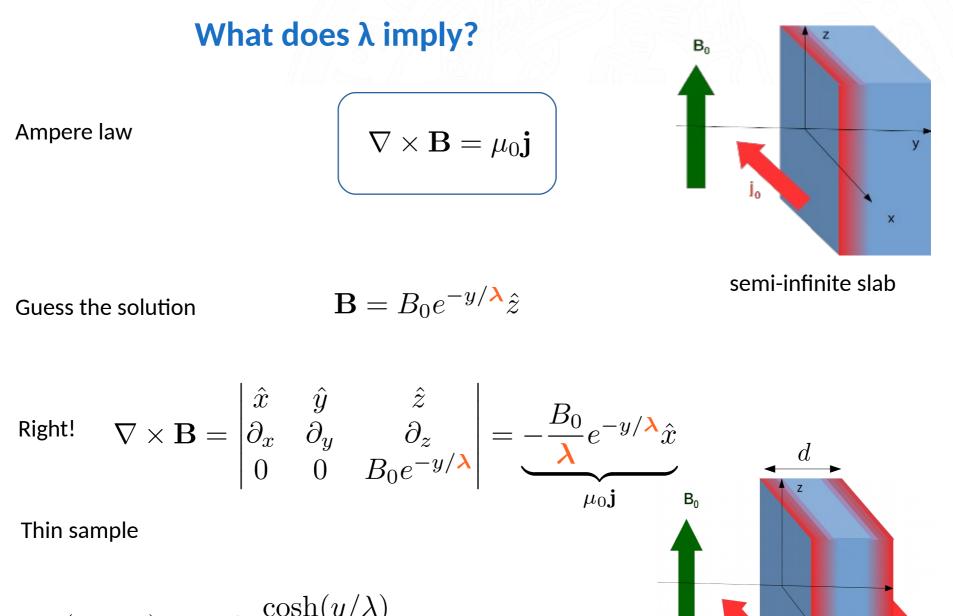
$$\langle \mathbf{v} \rangle = -\frac{e}{m} \mathbf{A} \qquad \longrightarrow \left[\mathbf{J}_s = -\frac{ne^2}{m} \mathbf{A} \right]$$


London equation


Fritz London, 1900-1956

DEPARTMENT OF MATHEMATICAL,
 PHYSICAL & COMPUTER SCIENCES, PARMA

19/08/2019



Magnetic field (London approximation)

Fisica degli Stati Condensati

DEPARTMENT OF MATHEMATICAL, PHYSICAL & COMPUTER SCIENCES, PARMA

$$\mathbf{B}(x, y, z) = \mu_0 k_0 \frac{\cosh(y/\lambda)}{\cosh(d/\lambda)} \hat{z}$$

Exercise: do it properly

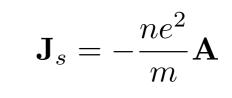
Check that

$$\mathbf{B} = \mu_0 k_0 \hat{z} \begin{cases} 1 & y < 0 \\ e^{-y/\lambda} & y > 0 \end{cases}$$

and

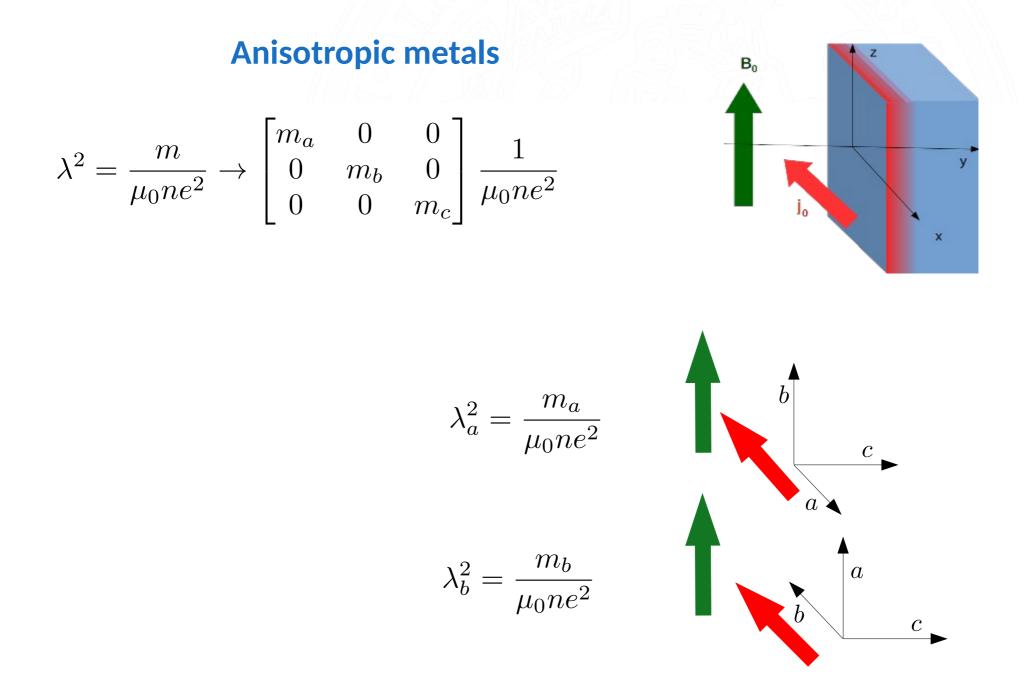
$$\mathbf{A} = -\mu_0 k_0 \hat{x} \begin{cases} y & y < 0\\ \lambda e^{-y/\lambda} & y > 0 \end{cases}$$

$$B_0$$

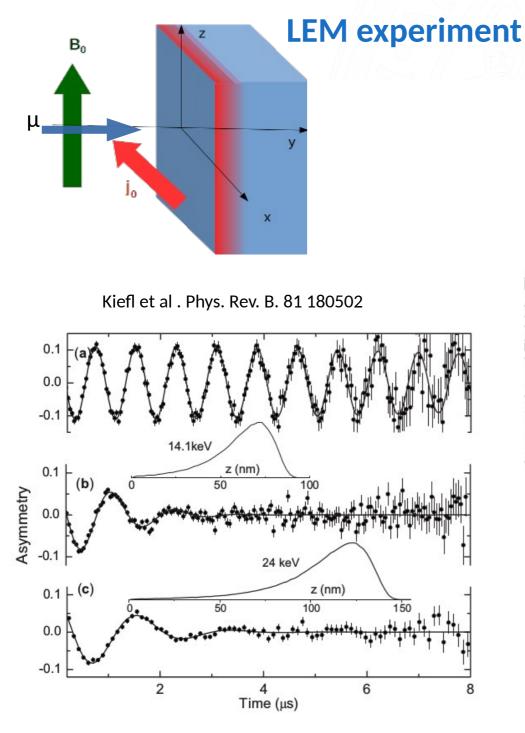

are solutions of

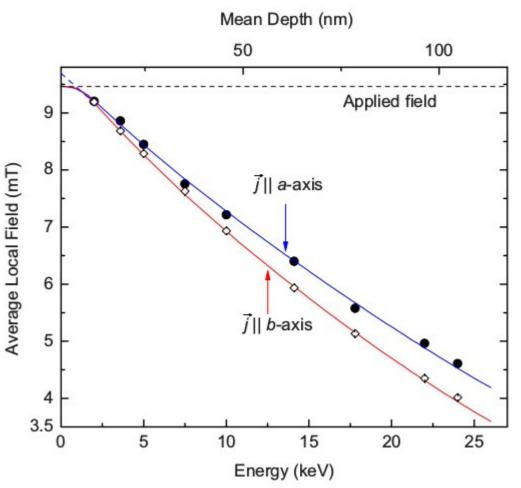
$$abla^2 {f B} = {1\over \lambda^2} {f B}$$

and


$$abla^2 \mathbf{A} = rac{1}{\lambda^2} \mathbf{A}$$

with




22 DEPARTMENT OF MATHEMATICAL, PHYSICAL & COMPUTER SCIENCES, PARMA

19/08/2019

19/08/2019

Advanced School on Muon Spectroscopy

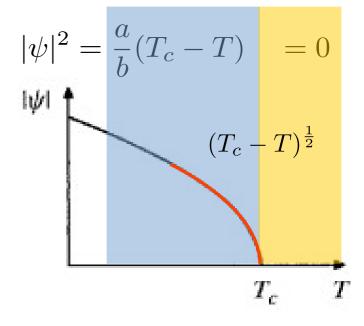
Landau model

The order parameter is a complex function ψ and the free energy density is

$$f_s(H) = f_n(H) + a(T - T_c)|\psi|^2 + \frac{b}{2}|\psi|^4 + \frac{\mu_0}{2}HM$$

linearise!

For a, b > 0 (only below T_c and below B_c)

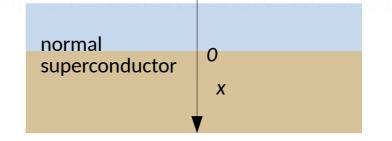

Condensation energy \equiv maximum energy that supercurrents can expell,

corresponds to a tiny free energy density

$$f_n(H_c) - f_s(H_c) = \frac{\mu_0}{2} H_c^2 = \frac{1}{2\mu_0} B_c^2$$

Compare

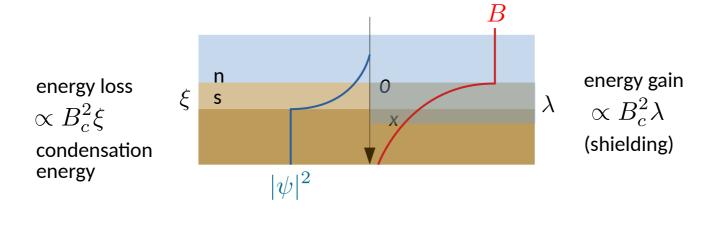
$$\begin{array}{|c|c|}\hline v_{cell} \frac{B_c^2}{2\mu_0} \approx 1 \,\mu \mathrm{eV}\\ \epsilon_F \approx 1 \,\mathrm{eV} \end{array}$$



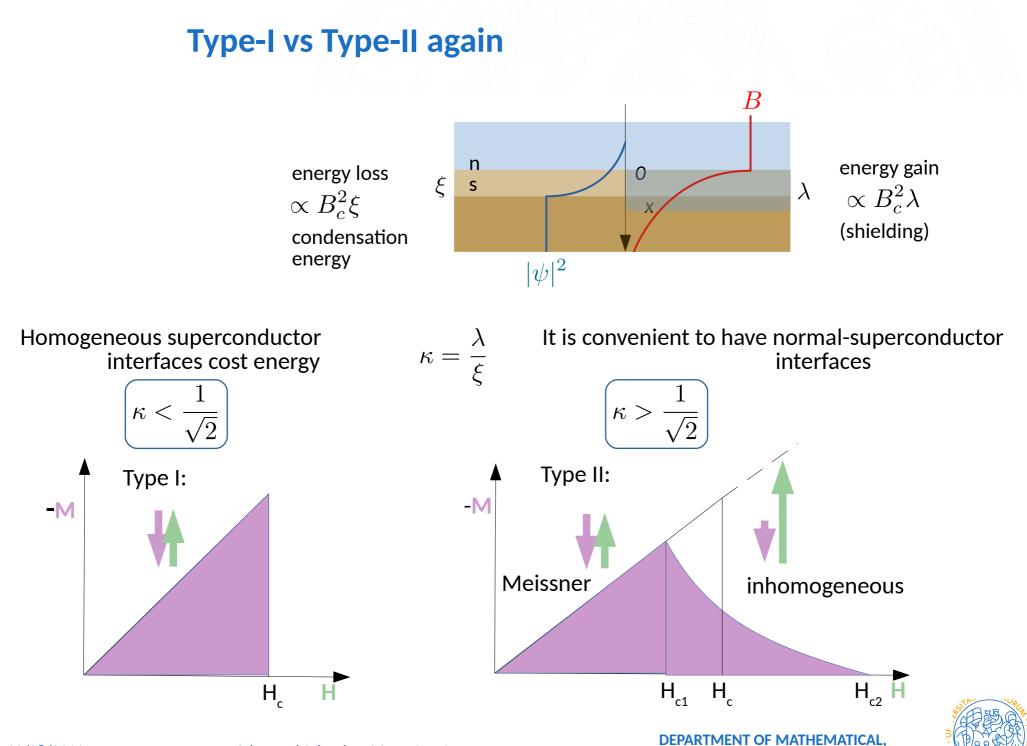
Ginzburg-Landau coherence length

Inhomogeneous order parameter

In zero *B* field, linearised (b = 0)



$$f_s(0) = f_n(0) + a(T - T_c)|\psi|^2 + \left(rac{\hbar^2}{2m}|m{
abla}\psi|^2
ight)$$
 Ginzburg-Landau free energy density


cost of varying the order parameter

The ratio of the order parameter to the gradient term is a square lengthscale

$$\left[\frac{|\psi|^2}{|\nabla\psi|^2}\right] = \underbrace{\frac{\hbar^2}{2ma|T - T_c|}}_{2ma|T - T_c|} = \xi^2$$

19/08/2019

Advanced School on Muon Spectroscopy

PHYSICAL & COMPUTER SCIENCES, PARMA

GL equations

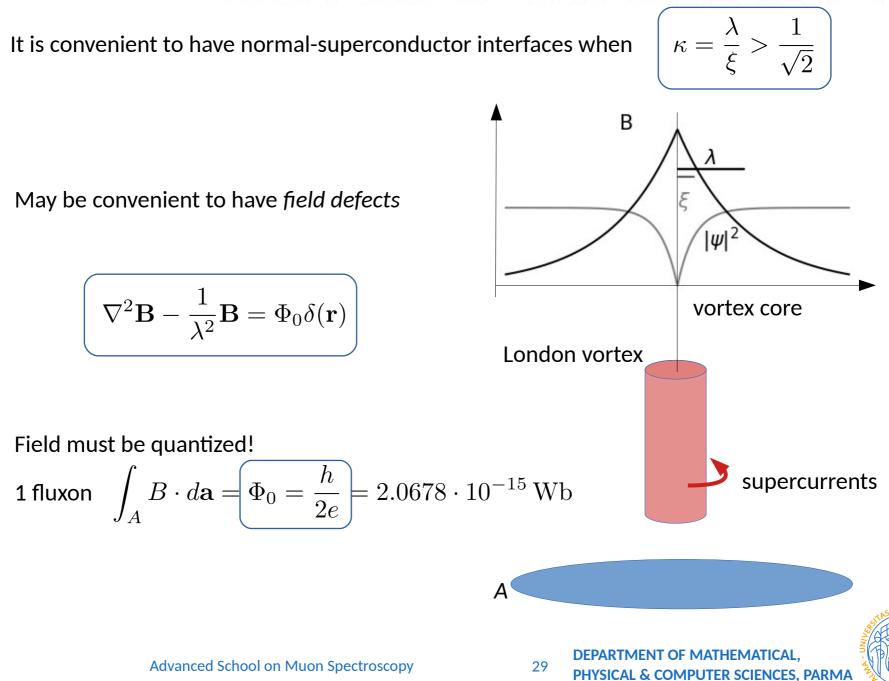
Minimizing the free energy with respect to $\nabla \psi$ $f = a(T - T_c)|\psi|^2 + \frac{1}{2m^*} \left|\frac{\hbar}{i}\nabla\psi\right|^2$ GL (linearised) equation $\left(-\frac{\hbar^2\nabla^2}{2m^*}\psi = a(T_c - T)\psi\right)$: like a Schrödinger equation In a magnetic field

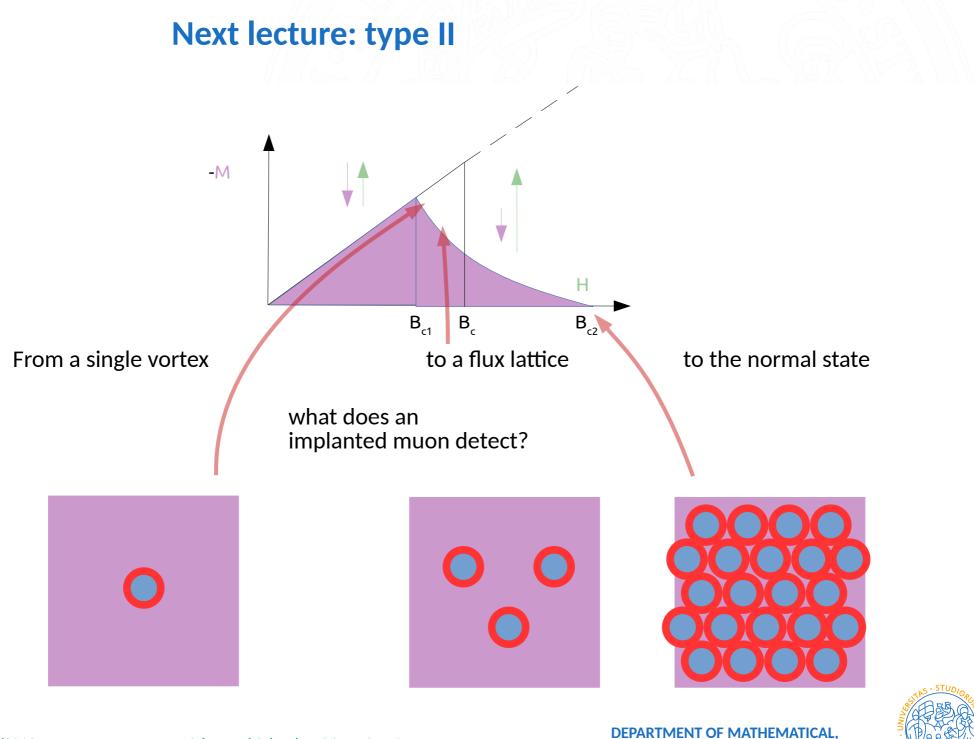
Minimizing the free energy $f = a(T - T_c)|\psi|^2 + \frac{1}{2m^*} \left| \left(\frac{\hbar}{i} \nabla + 2e\mathbf{A} \right) \psi \right|^2 + \frac{1}{2\mu_0} |\nabla \times \mathbf{A}|^2$ with respect to $\nabla \psi, \mathbf{A}$ independently

Two GL (linearised) equation

$$\mathbf{J}_s = -\frac{ne^2}{m}\mathbf{A}$$

cfr. London


$$\left[-\frac{\hbar^2}{2m^*} \left(\boldsymbol{\nabla} + i\frac{e^*}{\hbar}\mathbf{A}\right)^2 + a(T - T_c)\right]\psi = 0$$
$$\mathbf{J} = -\frac{e^*\hbar}{i2m^*} (\psi^*\boldsymbol{\nabla}\psi - \psi\boldsymbol{\nabla}\psi^*) - \frac{(e^*)^2}{m^*} |\psi|^2 \mathbf{A}$$


28

DEPARTMENT OF MATHEMATICAL, PHYSICAL & COMPUTER SCIENCES, PARMA

Single London vortex

