
19/08/2019 Advanced School on Muon Spectroscopy
DEPARTMENT OF MATHEMATICAL,  
PHYSICAL & COMPUTER SCIENCES, PARMA

Muons in superconductors

SIS

• Lesson I – the land we are exploring

– Introduction: superconductivity, a story of three length-scales

– London equations and the penetration depth

– Ginzburg Landau equations and the coherence length

• Lesson II – the workhorse of μSR

– The Abrikosov flux lattice

– Muon determination of the penetration depth

– Conventional and unconventional superconductivity: a glance

– BCS: the gap and its temperature dependence

• Lesson III – material science

– Clean vs. dirty superconductors

– A phase diagram for superconducting materials

– Towards atomic scale coherence: nanoscopic coexistence

– Triplet superconductivity, topological superconductivity (?)
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Muons in superconductors

SIS

• Lesson I – the land we are exploring

– Introduction: superconductivity, a story of three length-scales

– London equations and the penetration depth

– Ginzburg Landau equations and the coherence length

• Lesson II – the workhorse of μSR

– The Abrikosov flux lattice

– Muon determination of the penetration depth

– Conventional and unconventional superconductivity: a glance

– BCS: the gap and its temperature dependence

• Lesson III – the hotter topics

– Clean vs. dirty superconductors, extreme type II

– A phase diagram for superconducting materials

– Towards atomic scale coherence: nanoscopic coexistence

– Triplet superconductivity, topological superconductivity (?)
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Introduction: Superconductivity

1911 Heike Kameringh Onnes
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Elemental superconductors
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Elemental superconductors

http://www.superconductors.org/Type1.htm

Different sources: different shades 
of optimism

http://www.superconductors.org/Type1.htm
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Why superconductors?

10 T conventional
solenoid:
5 000 A in 1600 turns
5 MW    homes in Abingdon

30 l  liquid He/month

CERN
LHC
1232 main dipole 
392 quadrupole
6000 corrector magnets
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Why superconductors?

ITER tokamak

MRI
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Why superconductors?

Quantum computation: transmons
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Why superconductors?

A rare example of macroscopic quantum coherent state (with superfluids)

Also metals are an example of macroscopic quantum coherent state.

*decays in 1010 years
(not the same as Drude τ!)

However
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Why superconductors
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Persistent currents – 1
Perfect diamagnet

Shielding in three steps: 1 → 2 → 3

1 – No field                                           2 - Zero Field cooling 

This happen also in a  superconductor

I
ext

 

j
sc

screening eddy-currents to keep

      3 – Turn field on  

In a perfect conductor*

* with a phase transition at T
c
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Persistent currents – 2
Perfect diamagnet

I
ext

Establishing a persistent currents in three steps: 1 → 2 → 3

1 – Turn field on above T
c
 

In a perfect conductor 

I
ext

This does not happen in a superconductor

  2 – Field cooling                       3 – Turn field off   

I
ext

 = 0

j
sc
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Persistent currents - 4

I
ext

 

j
sc

Meissner-Ochsenfeld effec: 1 → 2

1 – Set field above T
c
                          2 - Field cooling                       

This would not happen to a perfect conductor

The flux is expelled, so the real rule is 

I
ext

Summary

A superconductor in an
external field  B, both 
F cooling and ZF cooling,
 expels the flux 
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Field Cooling vs Zero Field Cooling

Zhao et al. PNAS 116 12156

Extrinsic difference 
due to flux pinning

Ba
2
CuO

4-y

Negative M/H for ZFC is also
the response of a perfect conductor

Negative M/H in FC is the
signature of superconductivity 
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Type I and Type II superconductors

Critical field: superconductivity 
disappears for 

Jing Guo et al. PNAS 114, 13144

(TaNb)
0.67

(HfZrTi)
0.33

-M

H

Type I:   

H
c

Meissner

-M

H

Type II:   

H
c

H
c1

H
c2

inhomogeneous

Meissner

inhom
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Type I and Type II

What inhomogeneity for                      ?
(super)current vortices encircling quantized magnetic flux

Meissner

inhom

-M

H

Type II:   

H
c

H
c1

H
c2

inhomogeneousMeissner
vortices in YBCO
imaged by scanning 
SQUID microscopy
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Three length-scales

• London penetration depth

–      λ     controls the magnetic field penetration

• Coherence length

–     ξ  controls the quantum coherence of the ground state 

• Mean free path

–        controls scattering 
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London equation

Fritz London, 1900-1956

Sketch of deep argument on electron wavefunction:

● incoherent in normal Drude metal

● quantum coherent in superconductors 

Superconducting state                             even after switching fields on. 

No power supply

Minimal substitution

London equation
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London penetration depth

Also

London equation

Substituting in Ampére law one obtains 

For London
                            electron mass

                         electron density
                          electron charge

London penetration depth

after Cooper pairs
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London penetration depth 
derivation

Magnetic field (London approximation)

London equation

take the curl of the stationary Ampére law

Vector identity

By Gauss law
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What does λ imply?

Ampere law

Guess the solution

Right!

semi-infinite slab

Thin sample
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Exercise: do it properly

Check that

and

are solutions of

and

with



2319/08/2019 Advanced School on Muon Spectroscopy
DEPARTMENT OF MATHEMATICAL,  
PHYSICAL & COMPUTER SCIENCES, PARMA

Anisotropic metals
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LEM experiment

Low Energy Muons

Kiefl et al . Phys. Rev. B. 81 180502

μ
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Landau model

The order parameter is a complex function          and the free energy density is  

For                      (only below T
c
 and below B

c
)                     

Condensation energy ≡ maximum energy that supercurrents 
can expell,
corresponds to a tiny free energy density

Compare    

linearise!
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Ginzburg-Landau coherence length Inhomogeneous order parameter

x

0normal
superconductorIn zero B field, linearised (b = 0)

cost of varying the order parameter

The ratio of the order parameter to the gradient term 
is a square lengthscale 

x

0n
s

energy gain

(shielding)

energy loss

condensation
energy

Ginzburg-Landau free energy density
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Type-I vs Type-II again

x

0n
s

energy gain

(shielding)

energy loss

condensation
energy

It is convenient to have normal-superconductor 
                                           interfaces 

-M

H

Type I:   

H
c

-M

H

Type II:   

H
c

H
c1

H
c2

inhomogeneousMeissner

Homogeneous superconductor 
                interfaces cost energy
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GL equations

Minimizing the free energy
with respect to

GL (linearised) equation : like a Schrödinger equation

Minimizing the free energy
with respect to
independently

Two GL (linearised) equation 

In  a  magnetic field

cfr. London



2919/08/2019 Advanced School on Muon Spectroscopy
DEPARTMENT OF MATHEMATICAL,  
PHYSICAL & COMPUTER SCIENCES, PARMA

Single London vortex

It is convenient to have normal-superconductor interfaces when 

May be convenient to have field defects

London vortex

supercurrents

A

Field must be quantized!

1 fluxon  

vortex core
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Next lecture: type II

H

 

  B
c1

      B
c
                       B

c2
  

-M

what does an 
implanted muon detect?

From a single vortex                                        to a flux lattice                     to the normal state
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