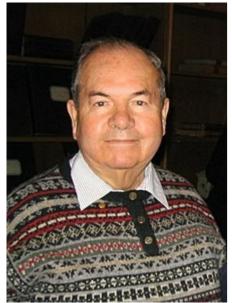
Muons in superconductors

- Lesson I the land we are exploring
 - Introduction: superconductivity, a story of three length-scales
 - London equations and the penetration depth
 - Ginzburg Landau equations and the coherence length
- Lesson II the workhorse of μ SR
 - The Abrikosov flux lattice
 - Muon determination of the penetration depth
 - Conventional and unconventional superconductivity: a glance
 - BCS: the gap and its temperature dependence
- Lesson III material science
 - Clean vs. dirty superconductors, extreme type II
 - A phase diagram for superconducting materials
 - Towards atomic scale coherence: nanoscopic coexistence
 - Triplet superconductivity, topological superconductivity (?)

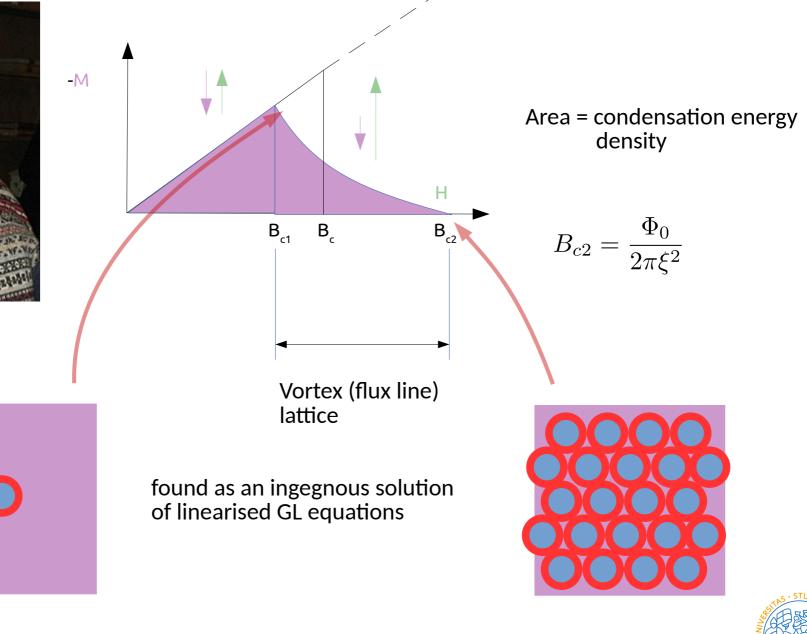
DEPARTMENT OF MATHEMATICAL

PHYSICAL & COMPUTER SCIENCES, PARMA

Type II superconductors



Alexei A. Abrikosov Nobel Prize 2003



DEPARTMENT OF MATHEMATICAL, PHYSICAL & COMPUTER SCIENCES, PARMA

Field does not vanish В due to overlap S M ξ $|\psi|^2$ order parameter vanishes at the core centre

3

Most often triangular (or square) free energy minimum

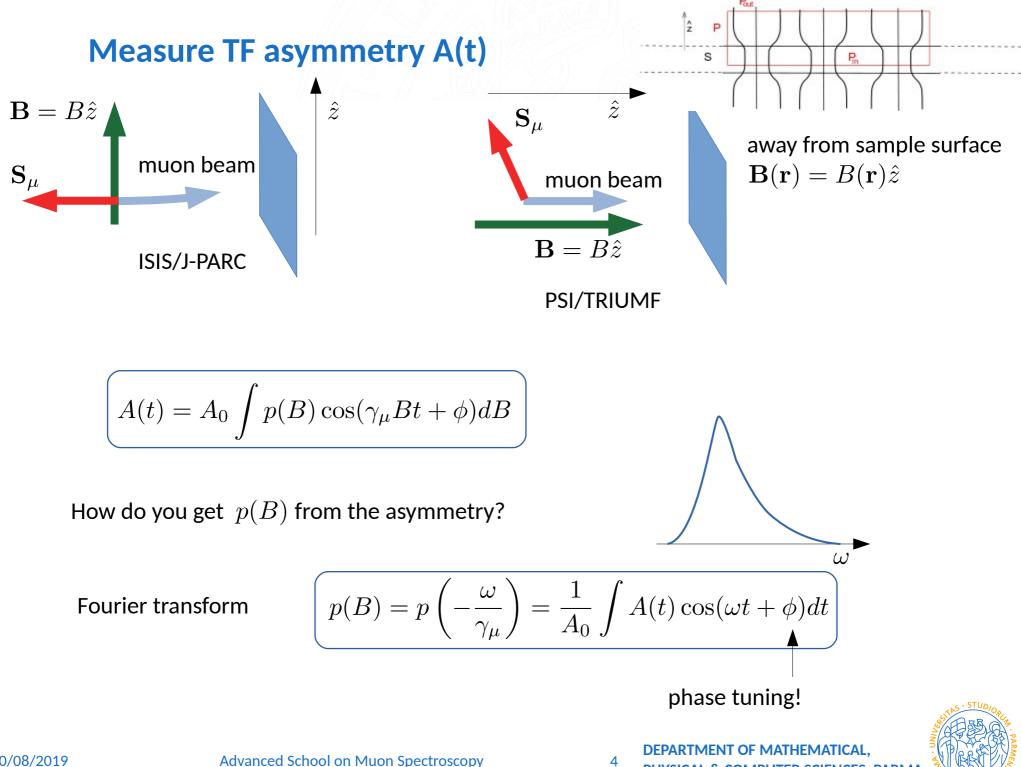
$$a_{\triangle} = b_{\triangle} = \left(\frac{4}{3}\right)^{\frac{1}{4}} \left(\frac{\Phi_0}{B}\right)^{\frac{1}{2}}$$

incommensurate to crystal lattice (much larger)

Muons sample uniformly the field distribution p(B)TF-µSR asymmetry:

$$A(t) = A_0 \int p(B) \cos(\gamma_{\mu} B t + \phi) dB$$

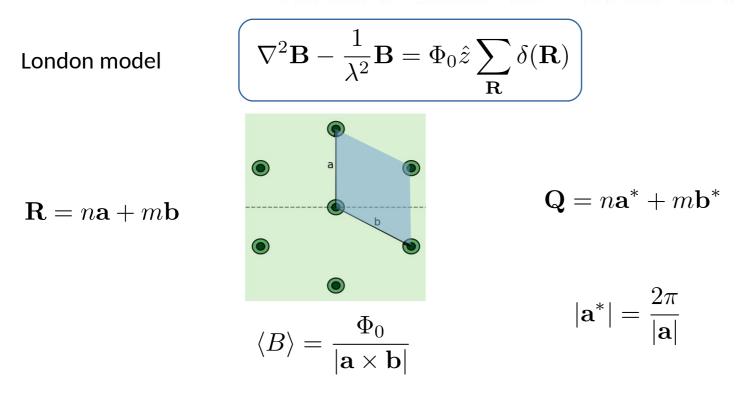
DEPARTMENT OF MATHEMATICAL, **PHYSICAL & COMPUTER SCIENCES, PARMA**



20/08/2019

PHYSICAL & COMPUTER SCIENCES, PARMA

Field distribution of a vortex lattice



Solution by (Fast) Fourier Transform

$$B(\mathbf{r}) = \langle B \rangle \sum_{\mathbf{Q}} b(\mathbf{Q}) e^{i\mathbf{Q} \cdot \mathbf{r}}$$

$$\boxed{b(\mathbf{Q}) = \frac{1}{1 + \lambda^2 Q^2}}$$

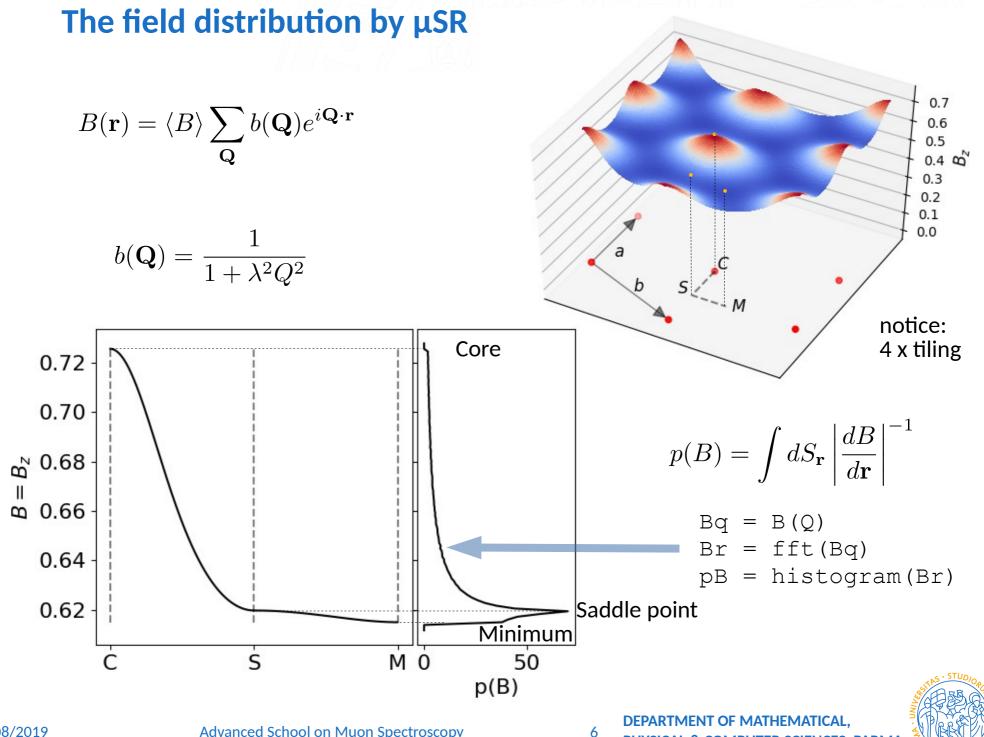
5

 \mathbf{b}^{*}

 \mathbf{a}^*

20/08/2019

DEPARTMENT OF MATHEMATICAL, PHYSICAL & COMPUTER SCIENCES, PARMA

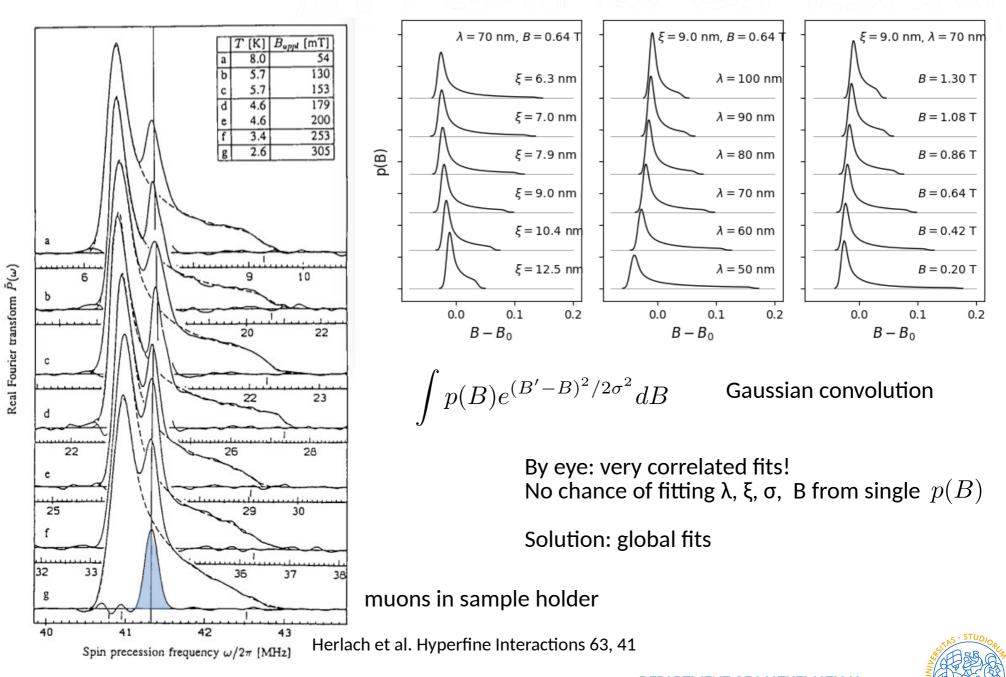


20/08/2019

Advanced School on Muon Spectroscopy

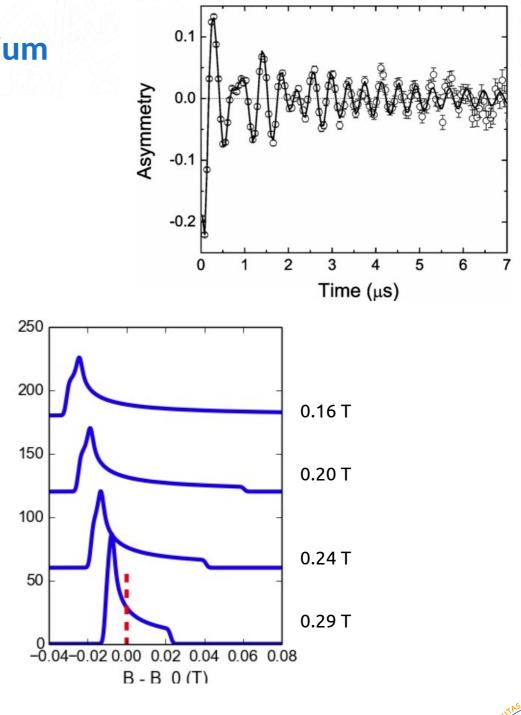
PHYSICAL & COMPUTER SCIENCES, PARMA

Textbook case: Nb single crystal

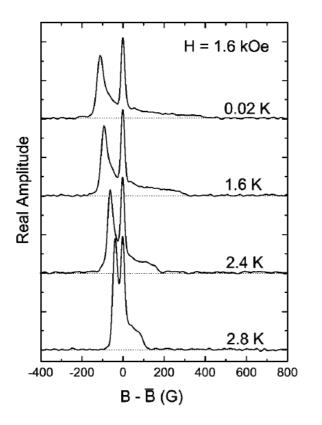


DEPARTMENT OF MATHEMATICAL, PHYSICAL & COMPUTER SCIENCES, PARMA

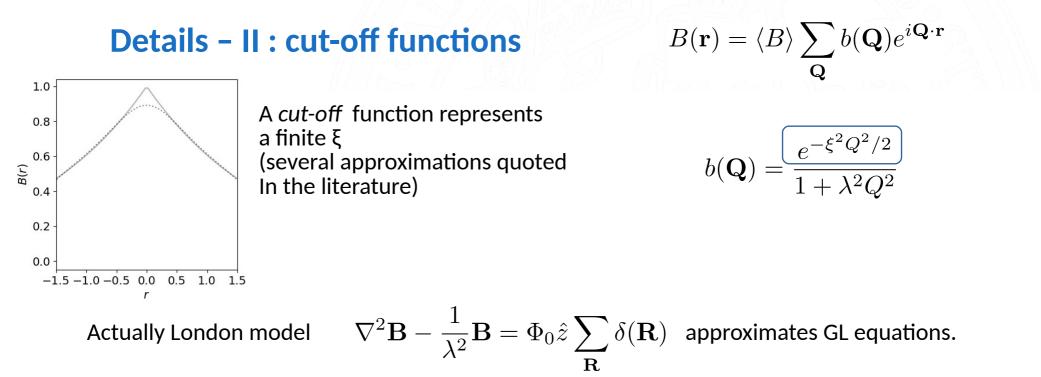
Another textbook case: Vanadium



M. Laulajainen PHYSICAL REVIEW B 74, 054511 (2006)



p(B) arb. units



Better GL approximation for extreme type II e.g. Yaouanc et al. Phys. Rev. B 55, 11107

$$b(\mathbf{Q}) = \underbrace{\frac{uK_1(u)(1-x^4)}{\lambda^2 Q^2}} K_1 \quad \text{modified Bessel function}$$
$$x = \frac{B}{B_{c2}}$$
$$u = \xi Q \left(\sqrt{2} - \frac{0.75}{\kappa}\right) \sqrt{1 + x^4} \sqrt{1 - 2x(1-x)^2}$$

9

DEPARTMENT OF MATHEMATICAL.

20/08/2019

Details - I : extreme type II

 $B(\mathbf{r}) = \langle B \rangle \sum_{\mathbf{Q}} b(\mathbf{Q}) e^{i\mathbf{Q}\cdot\mathbf{r}}$

For many high T_c superconductors
$$\kappa = \frac{\lambda}{\xi} \ge 10$$
 $b(\mathbf{Q}) = \frac{1}{1 + \lambda^2 Q^2}$
with $x = \frac{B}{B_{c2}}$ we get $\lambda^2 Q_0^2 \approx 5.4x \kappa^2 \gg 1$
 $b(\mathbf{Q}) \propto \frac{1}{\lambda^2}$

In this case TF- μ SR provides a simple direct measurement of λ

$$\boxed{\langle B^2 \rangle - \langle B \rangle^2} = \langle B \rangle^2 \sum_{\mathbf{Q} \neq 0} b^2(\mathbf{Q}) \propto \frac{1}{\lambda^4}$$

the standard deviation of the μ SR lineshape is proportional to λ^{-2}

$$\sigma[\mu s^{-1}] = \frac{7.904 \cdot 10^4}{\lambda^2 [nm]}$$

DEPARTMENT OF MATHEMATICAL, PHYSICAL & COMPUTER SCIENCES, PARMA

Summary

$$\int p(B)e^{(B'-B)^2/2\sigma^2}dB$$

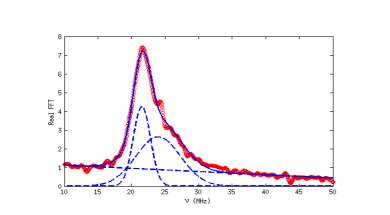
$$A$$

$$B(\mathbf{r}) = \langle B \rangle \sum_{\mathbf{Q}} \frac{C(\xi Q)}{1 + \lambda^2 Q^2} e^{i\mathbf{Q} \cdot \mathbf{r}}$$

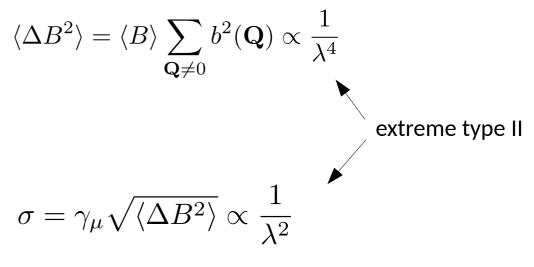
parameters

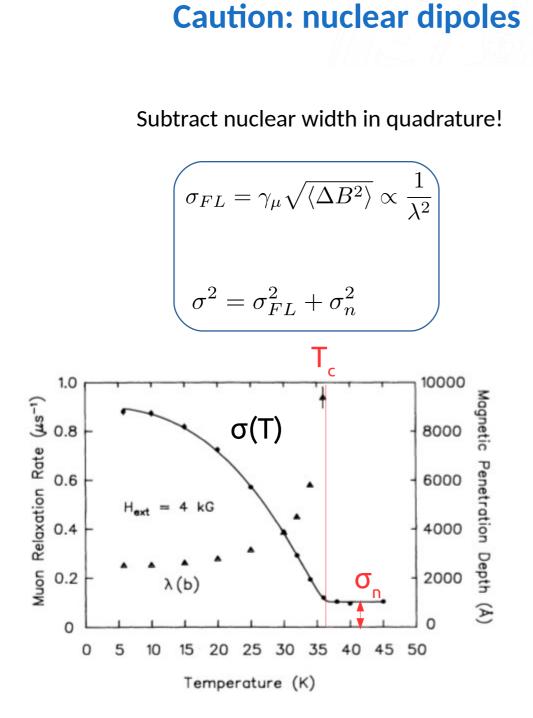
- σ inhomogeneity (disorder)
- ξ physically interesting
- λ
- C cut-off function

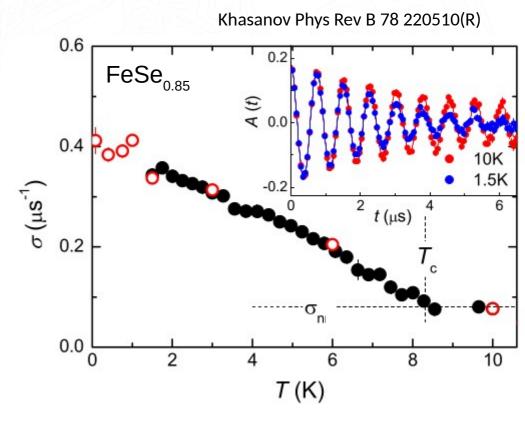
Sometimes it is easier to determine



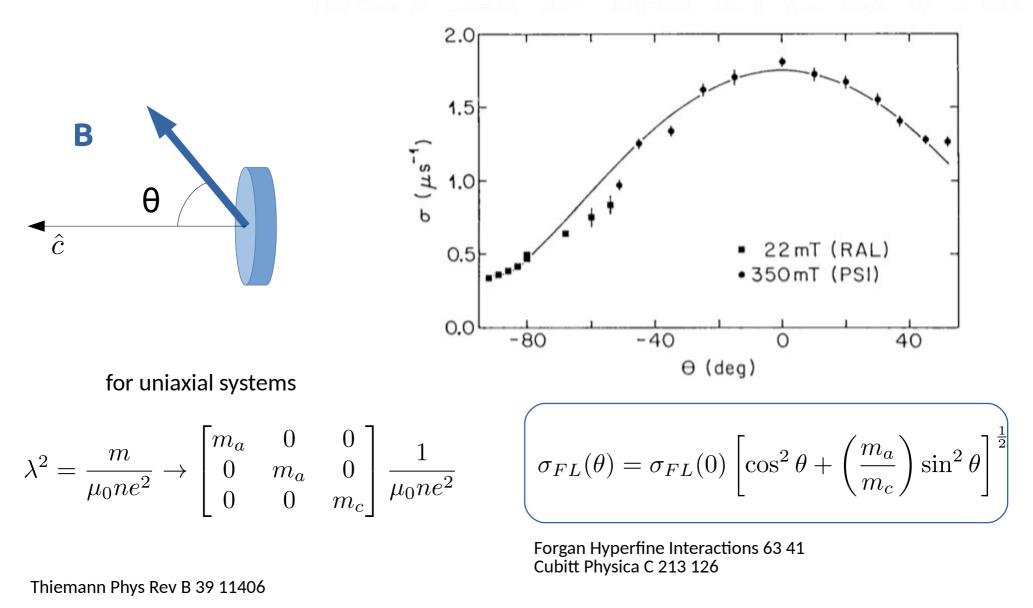
from a multi-Gaussian fit







Angle dependence in YBa₂Cu₃O_{6.9}

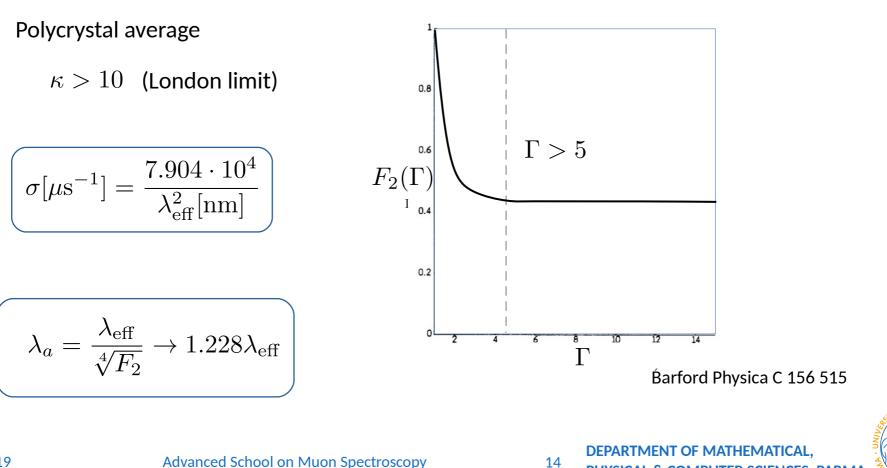


DEPARTMENT OF MATHEMATICAL,
 PHYSICAL & COMPUTER SCIENCES, PARMA

Anisotropic polycrystal

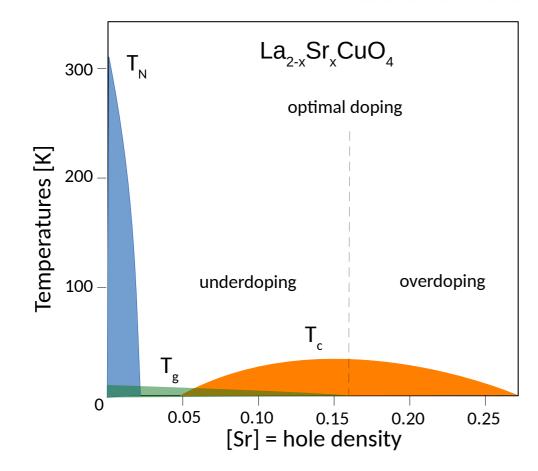
Anisotropy dictated by

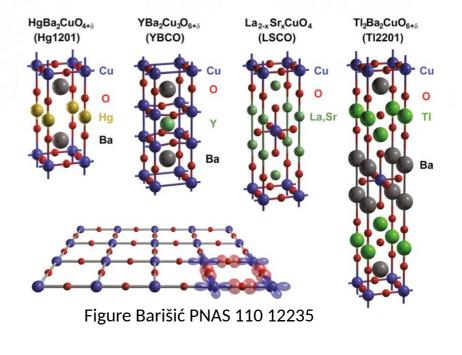
$$\begin{bmatrix} \lambda^2 \end{bmatrix} = \frac{1}{\mu_0 n e^2} \begin{bmatrix} m_a & 0 & 0 \\ 0 & m_a & 0 \\ 0 & 0 & m_c \end{bmatrix}$$
 Γ

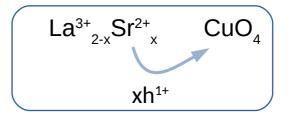


PHYSICAL & COMPUTER SCIENCES, PARMA

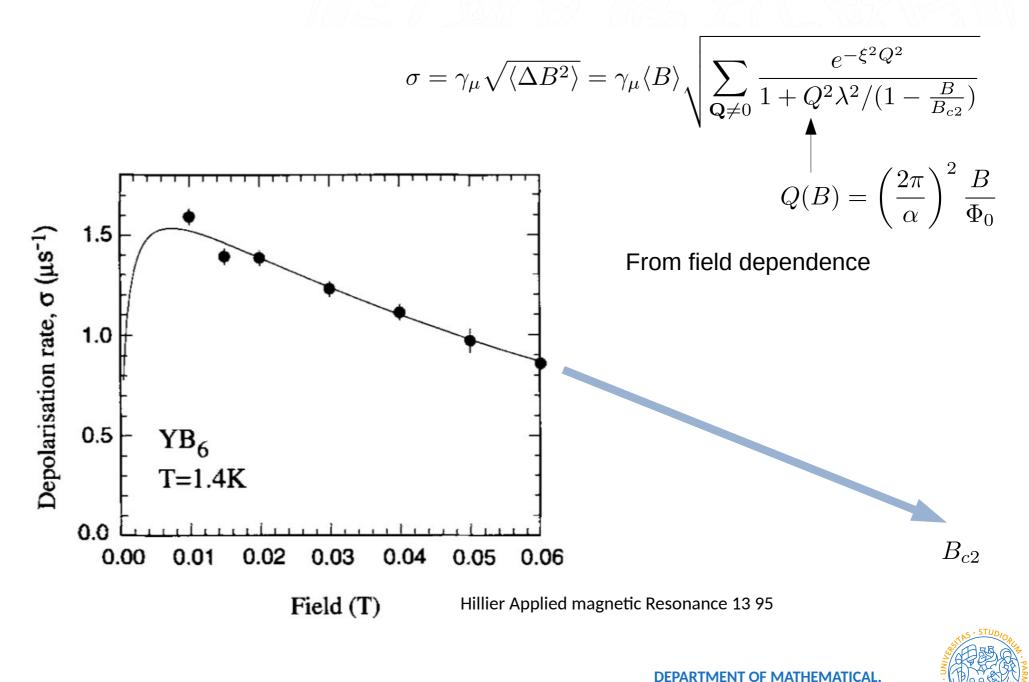
 $\frac{m_a}{m_c}$





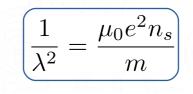


Indirect fit of coherence length



¹⁶ PHYSICAL & COMPUTER SCIENCES, PARMA

Temperature dependence of σ

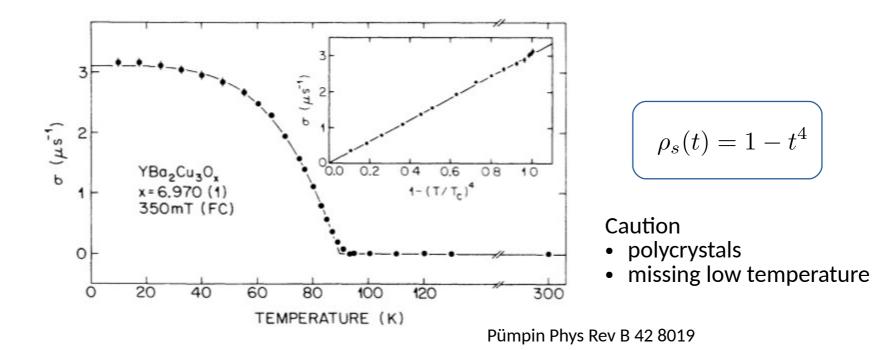


Two fluid model, for
$$t = \frac{T}{T_c}$$

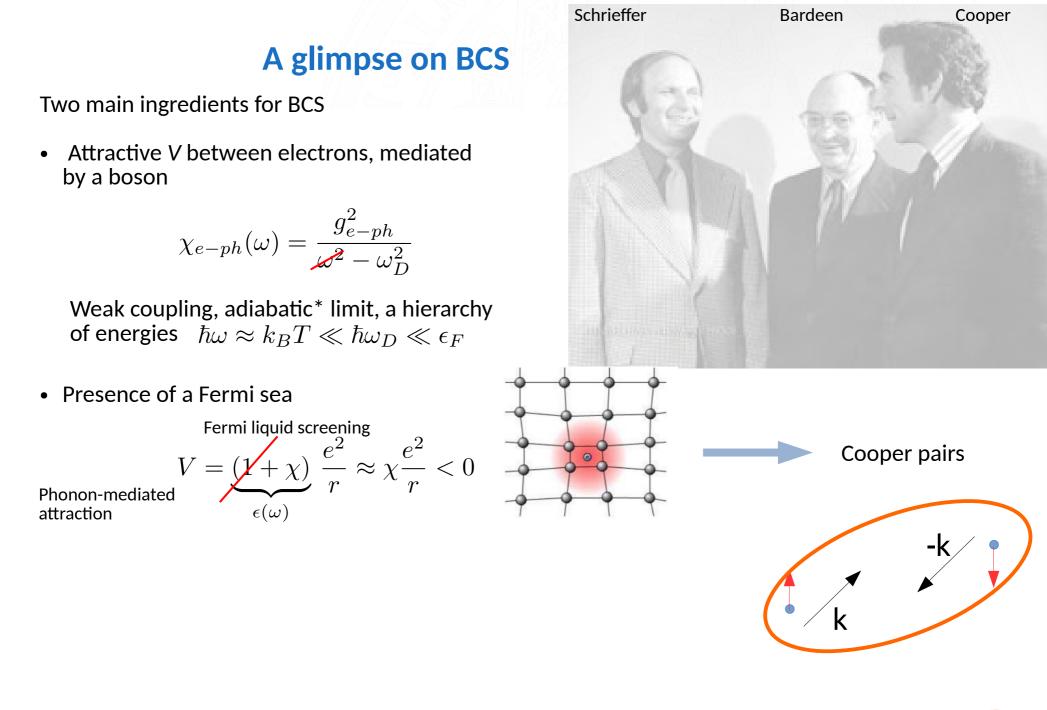
$$\rho = \underbrace{t^4}_{\rho_n} + \underbrace{1 - t^4}_{\rho_s}$$

$$\frac{\sigma(T)}{\sigma(0)} = \rho_s(T) = \frac{\lambda^2(0)}{\lambda^2(T)}$$

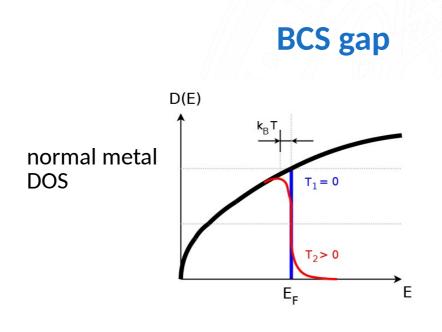
normalised supercarrier density

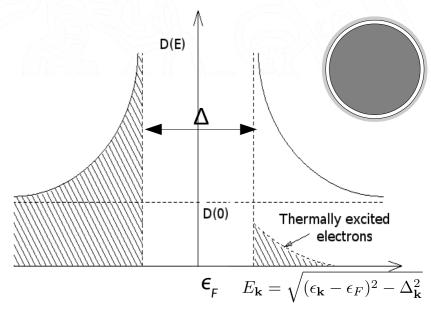


¹⁷ DEPARTMENT OF MATHEMATICAL, PHYSICAL & COMPUTER SCIENCES, PARMA



* Migdal theorem





below T_c gap opens in DOS at $\epsilon_{_F}$

1.0

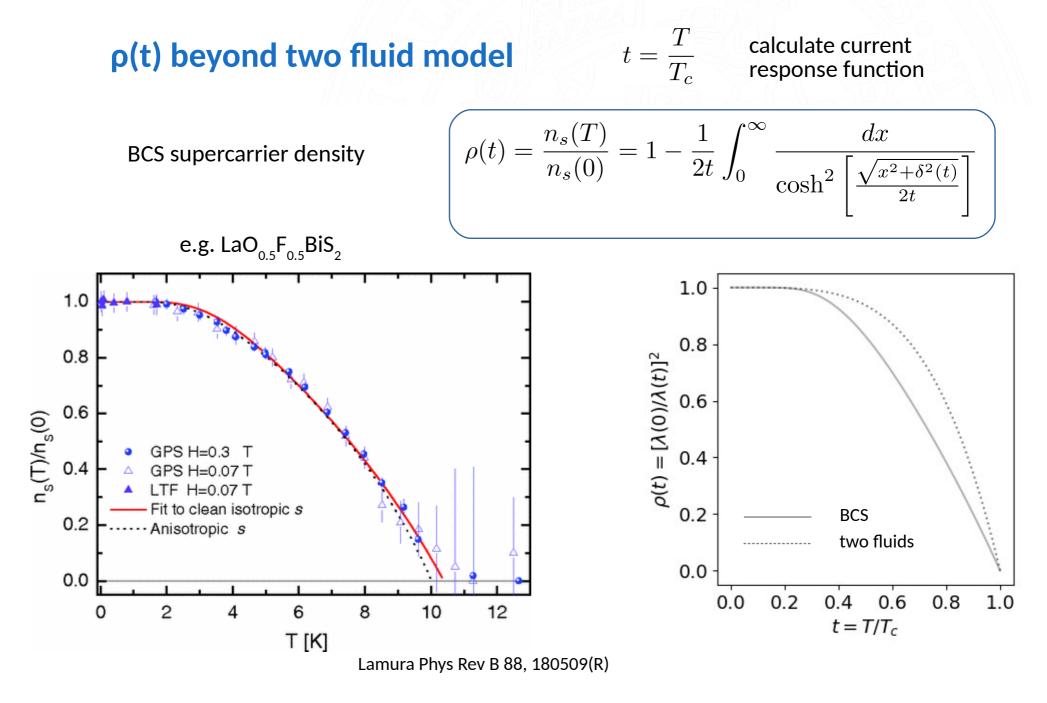
At T = 0 $\Delta(0) = 1.764 k_B T_c$ and the temperature dependence is

$$\Delta(T) = \Delta(0) \tanh\left(\frac{\pi T_c}{\Delta(0)}\sqrt{\frac{1-t}{t}}\right)$$
new definition of coherence length $\xi_0 = \frac{\hbar v_F}{\pi \Delta(0)}$
19
Advanced School on Muon Spectroscopy
19
DEPARTMENT OF MATHEMATICAL,
purpose of a computer period of a compute

20/08/2019

Advanced School on Muon Spectroscopy

PHYSICAL & COMPUTER SCIENCES, PARMA

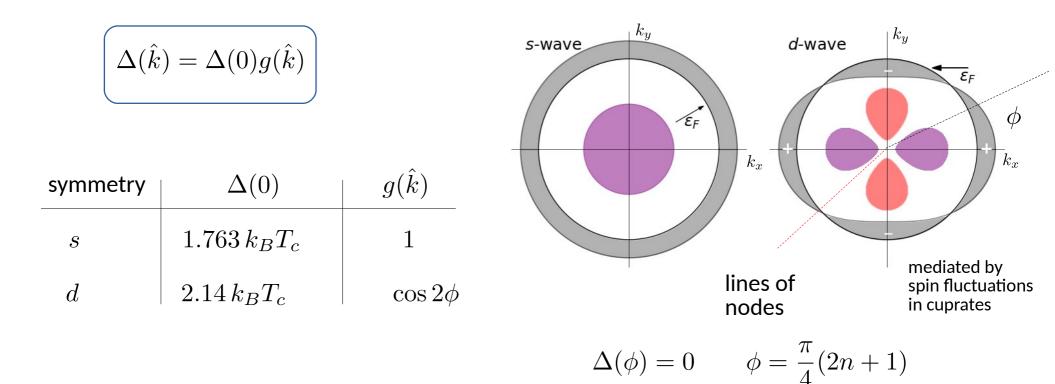


Beyond phonon coupling

BCS weak coupling assumes

 $\Delta_{\mathbf{k}} = \Delta$ constant in **k** space

Other couplings may have different symmetries



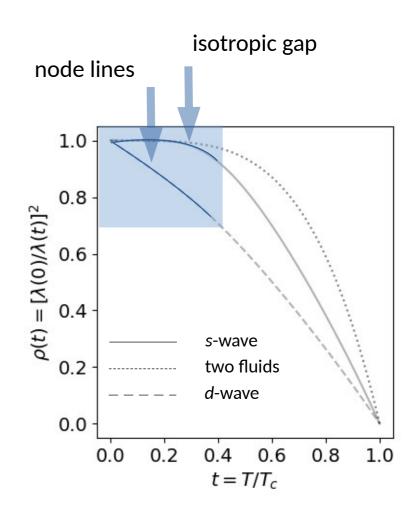
DEPARTMENT OF MATHEMATICAL,
 PHYSICAL & COMPUTER SCIENCES, PARMA

BCS gap: different coupling

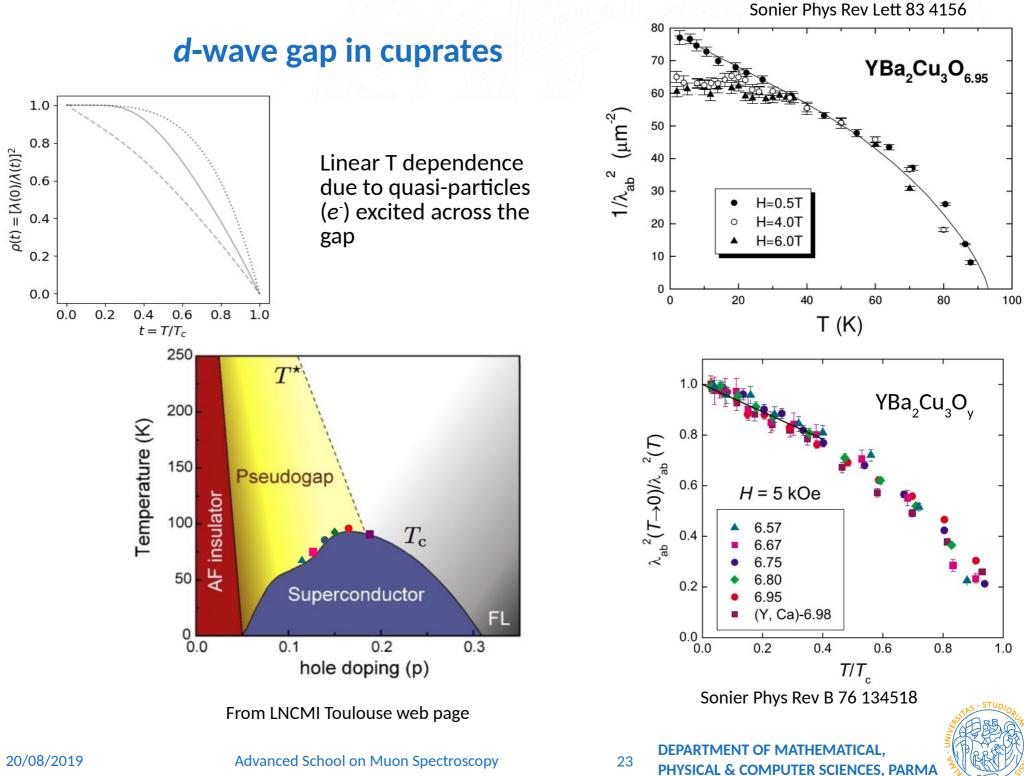
A useful equation for the gap temperature dependence Gross Zeitschrift fur Physik B: Condensed Matter 82, 243

$$\Delta(T) = \Delta(0) \tanh\left(\frac{\pi T_c}{\Delta(0)} \sqrt{\alpha \frac{1-t}{t}}\right)$$

symmetry	$\Delta(0)$	$g(\hat{k})$	α
s	$1.763 k_B T_c$	1	1
d	$2.14 k_B T_c$	$\cos 2\phi$	$\frac{4}{3}$



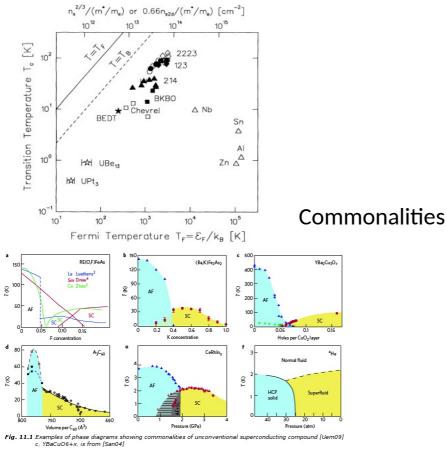
22 DEPARTMENT OF MATHEMATICAL, PHYSICAL & COMPUTER SCIENCES, PARMA



Dirty superconductors

Next lesson

A phase diagram for superconductivity



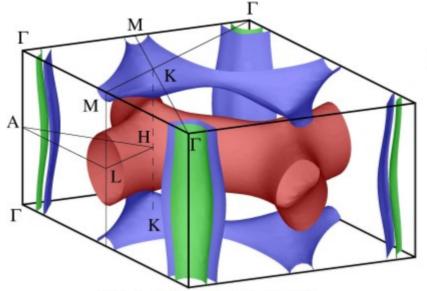
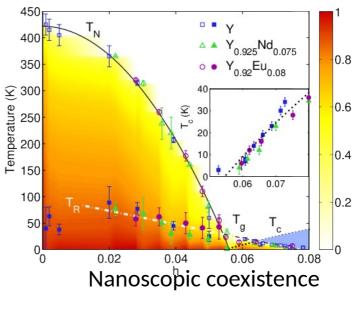
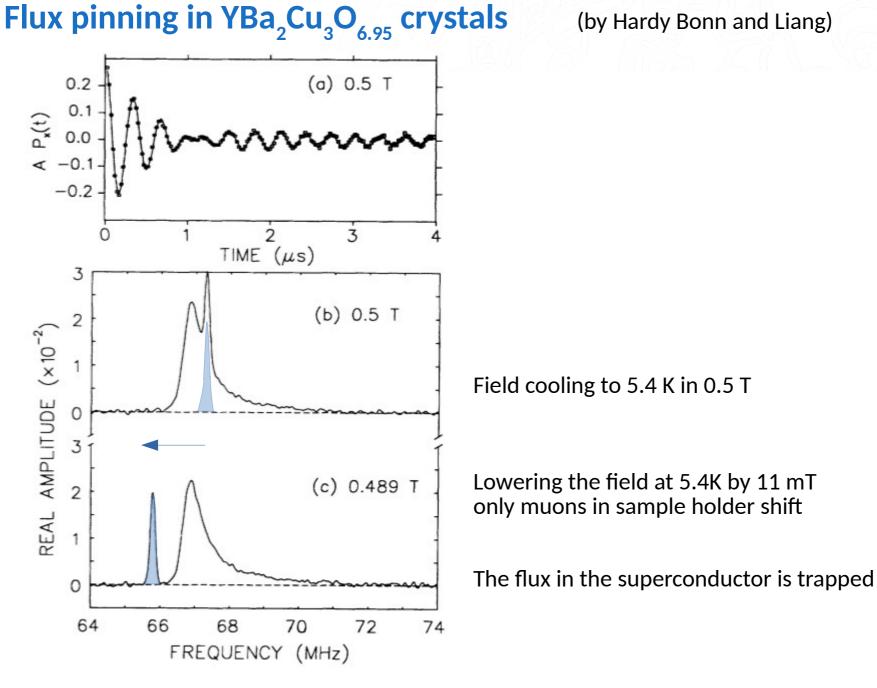


FIG. 3. Fermi surface of MgB₂.

Multi gap superconductivity



Advanced School on Muon Spectroscopy



Sonier Phys. Rev. Lett. 72 744