
Computer Simulations for Interpreting µSR Experiments

Leandro Liborio, Simone Sturniolo, Dominik Jochym, Samuel Jackson

Theoretical and Computational Physics Group, SCD, STFC

Francis Pratt, Stephen Cottrell

ISIS Muon Group, STFC

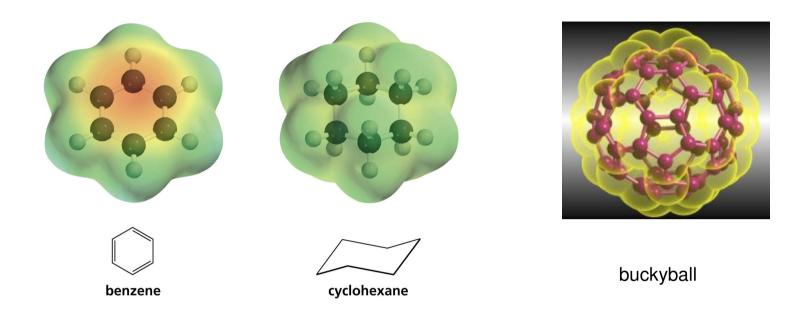
2

How computer simulations can be used to assist in the interpretation of μSR experiments in molecular systems.

3

The use of computer simulations for μSR experiments in periodic crystalline systems. The problem of finding the muon stopping site .

4


2

How computer simulations can be used to assist in the interpretation of μSR experiments in molecular systems.

3

The use of computer simulations for μSR experiments in periodic crystalline systems. The problem of finding the muon stopping site .

4

Schrödinger equation contains most of a system's chemistry:

$$\widehat{\mathcal{H}}\left[\Psi(r, \dots r_{N;} R_1, \dots R_M)\right] = \mathbb{E}\Psi(r, \dots r_{N;} R_1, \dots R_M)$$

Born-Oppenheimer Approximation:

Assume that electronic relaxation is much faster than nuclei motion ($m_e << m_N$). Then can assume electrons move in the field of fixed nuclei.

$$\widehat{\mathcal{H}}_{el}[\psi(r_1, \dots r_N)] = \mathsf{E}_{\mathsf{el}}\psi(r_1, \dots r_N)$$

WARNING: $(m_e << m_{\nu})$ **NOT** true for muons.

$$\widehat{\mathcal{H}}\big[\Psi\big(r,\ldots r_{N;}\,R_1,\ldots R_M\big)\big] = \mathsf{E}\Psi\big(r,\ldots r_{N;}\,R_1,\ldots R_M\big)$$

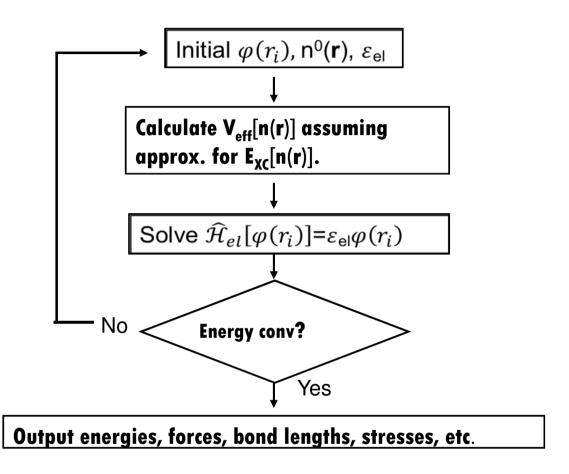
Born-Oppenheimer

$$\widehat{\mathcal{H}}_{el}[\psi(r_1,...r_N)] = \mathsf{E}_{\mathsf{el}}\psi(r_1,...r_N)$$

Black Box with Suitable Approximations

• $\mathsf{n}(\mathbf{r}) = \langle \varphi(r_1) ... \varphi(r_N) | \langle \varphi(r_1) ... \varphi(r_N) | \rangle$ system of fictional N-independen particles each represented by $\varphi(r_i)$.

Can solve the Schrödinger equation and obtain an approximate energy and wave function for the system.



Obtain the relax structure and the total energy of the system

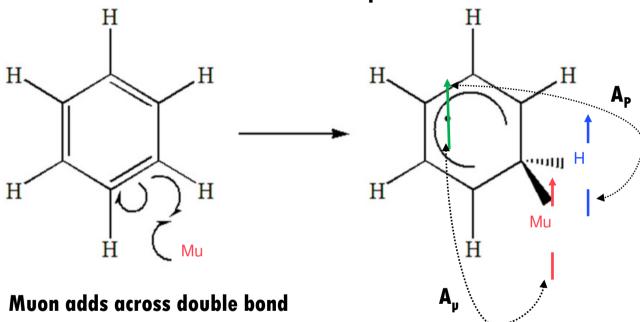
1

Some fundamental approximations involved in our computer simulations. (Or a very brief introduction to Density Functional Theory).

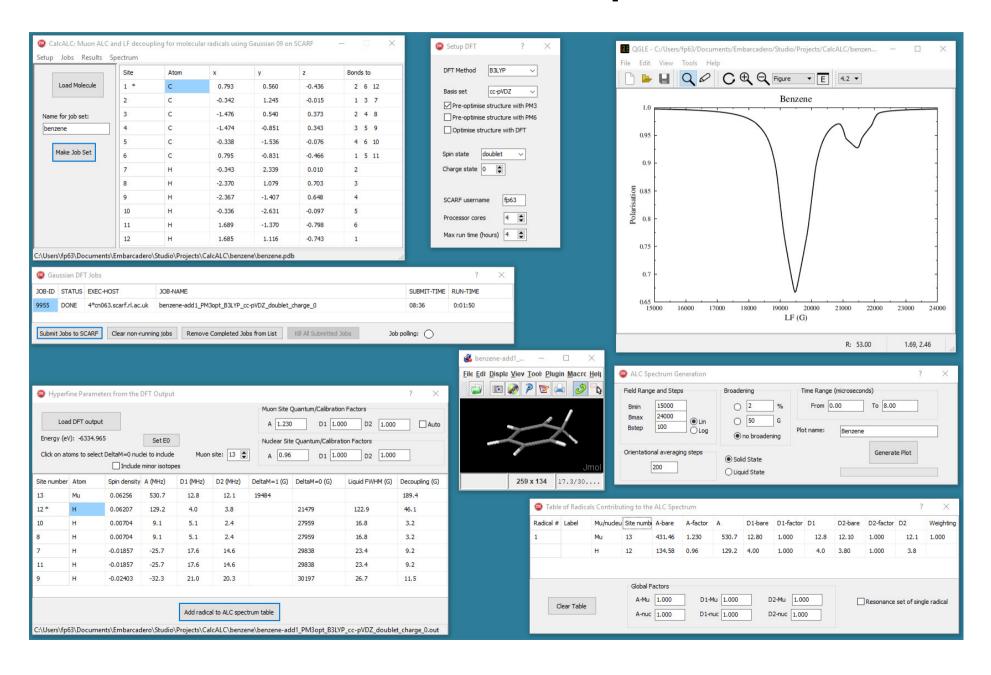
2

How computer simulations can be used to assist in the interpretation of μSR experiments in molecular systems.

3

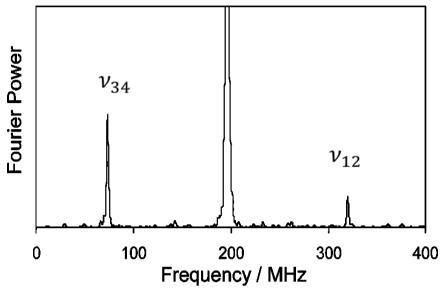

The use of computer simulations for μSR experiments in periodic crystalline systems. The problem of finding the muon stopping site .

4


BENZENE

$$\mu^+e^-=Mu$$

Delocalized unpaired electron


CalcALC: From Molecule to ALC Spectrum via DFT

Imidazole-type Carbene

Breit-Rabi diagram αα αα $(\alpha\beta + \beta\alpha)/\sqrt{2}$ αβ ββ Relative Energy ββ $(\alpha\beta - \beta\alpha)/\sqrt{2}$ βα 0.0 1.0 2.0 3.0 Magnetic Field

Figure 3. Transverse field μ SR spectrum at 14.4 kG from 1 in THF at 298 K. The pair of peaks at ca. 73 and 320 MHz is due to a muoniated radical.

• F- μ SR to calculate A_{μ} as

$$A_{\mu} = \nu_{12} - \nu_{34} = 246.4 MHz$$

I. McKenzie, et al., J. AM. CHEM. SOC. VOL. 125, NO. 38, p. 11565, (2003)

A_{μ} =246.4 MHz (adjusted to experiment)

Used calculated reaction energies to place Mu in the molecule: (a) preferred site.

$$\Delta E(a) = E_{radical.} - (E_{carbene.} + E_H)$$

• Adjust the theoretical A_{μ} to agree with the experimental value.

2

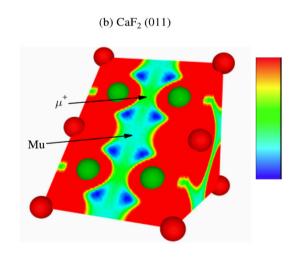
How computer simulations can be used to assist in the interpretation of μSR experiments in molecular systems.

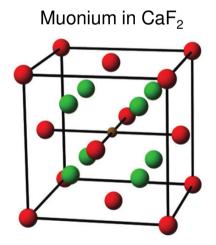
3

The use of computer simulations for μSR experiments in periodic crystalline systems. The problem of finding the muon stopping site .

4

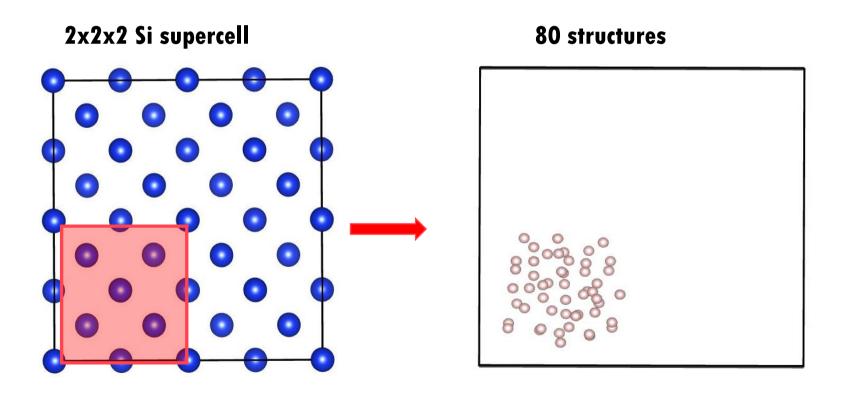
EXPERIMENTAL APPROACH

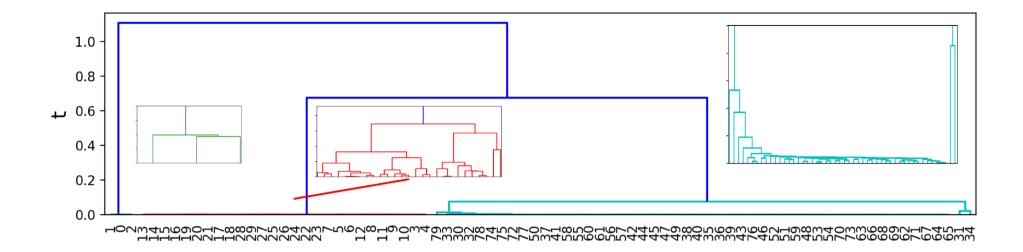

•Muonated Fe: follow the evolution of the muon frequency shift in a transverse field experiment as a function of the applied stress in a single Fe crystal¹

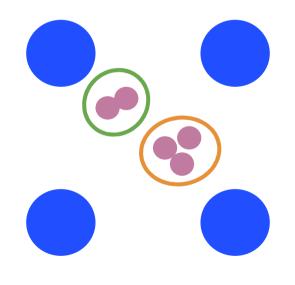

COMBINED THEORETICAL / EXPERIMENTAL APPROACH

• Muonated Fe_3O_4 , ZnO and LiF: the theoretical calculations are used for testing different potential muon stopping sites

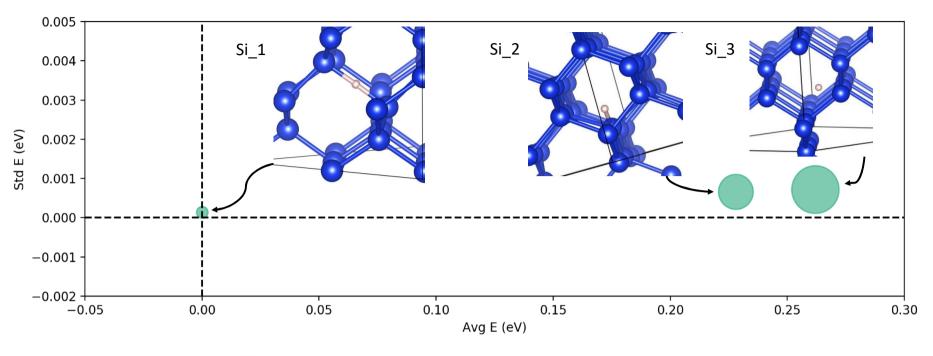
THEORETICAL APPROACH

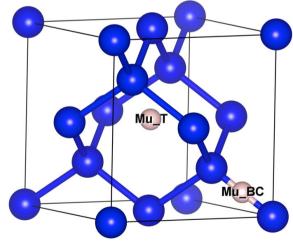

•Approach that relies on the analysis of the electrostatic potential of the bulk material obtained from Density Functional Theory (DFT) simulations. This is know as the Unperturbed Electrostatic Potential Method (UEP)




W. J. Kossler, et. al., Phys. Rev. B 32, 293, (1985)J. Moller, et al., Phys. Rev. B 87, 121108(R) (2013)

- 1) Build 2x2x2 Si supercell
- 2) Define region to randomly locate muonium pseudo-atoms
- 3) Generate muonated structures placing muonium in randomised positions within the chosen region
- 4) Relax filtered structures using calculated DFT forces


https://arxiv.org/abs/1801.10454



- Define *n*D vector: $(E_T, Q_1, Q_2, Q_3,...)$
- Look for "closeness" in *n*D space
- Hierarchical clustering
- 3 clusters identified

- Identified 3 clusters
- Use k-means clustering
- lidentified the Mu_T and M_{BC} in Silicon.

2

How computer simulations can be used to assist in the interpretation of μSR experiments in molecular systems.

3

The use of computer simulations for μSR experiments in periodic crystalline systems. The problem of finding the muon stopping site .

4

CONCLUSIONS

DFT provides the basis for our computer simulations. Choose right code and XC functional for your system.

2

For molecules, standard DFT calculations can assist experiments, i.e.: help with ALC results.

3

For crystals, we can use simulations to predict the muon stopping site.

4

Working of using DFTB+, which may accelerate the calculations. Need to estimate the quantum effects.

JOCHYM

STURNIOLO

LIBORIO

PRATT

JACKSON

COTTRELL