Complementary Techniques NMR, ESR and µSR

Dr N J Clayden School of Chemistry University of East Anglia

Caveat

All depends on the actual chemical system under investigation

Starting point

- Muon is an extrinsic probe implanted into a material
- ► Magnetic properties like ¹H and e⁻¹, all S=1/2
- Muon implants as a diamagnetic muon think NMR
- Muon implants as muonium, or reacts to give a muoniated radical think ESR (spin label)

Diamagnetic muons and NMR Structure

- Unlike NMR, muons are NOT a structural tool
 - Cannot guide where the muon implants
 - Difficulty assigning the implantation site without assuming a structure
 - ► Short lifetime precludes any "chemical shift" information
 - Exception, the Knight shift in a metal, information on the electronic structure

Diamagnetic muons and NMR Dynamics

- Both NMR and muons can be used to study dynamic processes
- Timescales for both depend on parameter being observed
 - \triangleright NMR: Population, chemical shift, J, T_1 and T_2
 - \triangleright μ SR: T_1 and T_2
- Averaging of dipolar interactions by the motion of the spin
 - ► Nuclear-nuclear dipole for NMR
 - Muon-nuclear dipole for μSR
 - ► Similar range of rates accessible $(\gamma_{\mu} \sim 3.184\gamma_{H})$

Case study Li⁺ diffusion in Li-ion battery anodes

▶ Use the muon response as an indirect measurement of Li⁺ diffusion

Table 3 The diffusive coefficient D_{Li} around room temperature and E_a in Li intercalated graphite estimated with different techniques. D_{Li} represents a self diffusion coefficient, i.e. a jump diffusion coefficient, while \tilde{D}_{Li} represents a chemical diffusion coefficient

$\mathrm{C_6Li}$		
$D_{\text{Li}} (\text{cm}^2 \text{ s}^{-1})$	$\tilde{D}_{\mathrm{Li}} \left(\mathrm{cm}^2 \ \mathrm{s}^{-1} \right)$	E _a (meV)
$7.6(3) \times 10^{-11}$	_	270(5)
3.8×10^{-11}	_	550
10 ⁻⁸	_	_
$10^{-8} - 10^{-7}$	_	_
0.9×10^{-11}	_	283
_	$1-10 \times 10^{-11}$	510
	$D_{\text{Li}} (\text{cm}^2 \text{ s}^{-1})$ $7.6(3) \times 10^{-11}$ 3.8×10^{-11} 10^{-8} 10^{-8} 10^{-8}	$D_{\text{Li}} (\text{cm}^2 \text{ s}^{-1})$ $\tilde{D}_{\text{Li}} (\text{cm}^2 \text{ s}^{-1})$ 7.6(3) × 10 ⁻¹¹ — 3.8 × 10 ⁻¹¹ — 10 ⁻⁸ — 10 ⁻⁸ -10 ⁻⁷ — 0.9 × 10 ⁻¹¹ —

Izumi Umegaki et al Phys. Chem. Chem. Phys., 2017, 19, 19058

Case study Li⁺ diffusion in Li-ion battery anodes

Diamagnetic muons and NMR Reactions

- NMR extremely versatile
- μSR very limited
 - ► Movement from one trapped site to another is diffusion
 - Delayed formation of muonium
- Show as an "excess" relaxation rate

Muoniated radicals and ESR Structure

- Muoniated radicals are formed when muonium adds to a double bond
- ESR a probe for the local environment spin labels
 - Solvation in membranes
 - ▶ Distance probes separation between two labels
- (ESR can be used to study structure with unpaired electrons in general)
- \triangleright µSR only used as a probe for the local environment
- Hyperfine couplings constants depend on the polarity of the medium

Muons or ESR spin labels

Muons

- Target molecule itself might be muoniated
- Insensitive
- Simple system (or complex without other muon targets)

ESR

- Structure compromised by having spin label added
- Sensitive
- Complex systems

ALC- μ SR Resonant fields reflect differences in the hyperfine coupling constants $A_{\rm H}$

Typically > 100 MHz

E. Roduner et al Phys. Chem. Chem. Phys., 2002, 4, 1510-1512

- D. Marsh, C. Toniolo
- J. Magn. Reson. 190 (2008) 211-221

DOXYL

Strength of reaction field from the solvent

Muoniated radicals and ESR Dynamics

- Both ESR and μSR can be used to study dynamics
- ESR requires a spin label nitroxide ions
- Both rely on averaging of hyperfine coupling constants
- Similar time window

$$H_3C$$
 O
 CH_3
 O
 CH_3

ESR

Complex analysis of conformers for a 72R2 mutant of T4L with torsional oscillations and conformational jumps

Alberta Ferrarini et al J. Phys. Chem. B **2006**, 110, 26260-26271

No side chain motion

Muons

MCKenzie et al Phys.Chem.Chem.Phys., 2017, 19, 9551

2-phenyl ethanol in 35% wt $C_{12}E_4$

Probe is the molecule partitioning

General comparison

NMR

- Target
 - ► Intrinsic NMR active nucleus e.g. ¹³C
- Detection
 - ► Induced voltage in a coil
- Phase
 - Solid, liquid, rarely gas
- Sensitivity
 - Depends on nucleus but < 10 mg</p>

μSR

- Target
 - Implanted muon, muonium or muoniated radical,
- Detection
 - Positron decay product, scintillator/PMT
- Phase
 - Solid, liquid, gas
- Sensitivity
 - ► Typically 1-2 g