Future shocks: opportunities in magnetism with Super-MuSR

Tom Lancaster

Durham University

(Mega) Events, dear boy, (mega) events

Tom Lancaster

Durham University

Opportunities from Super-MuSR

Data rate and quality

Enhanced frequency response

Opportunities from Super-MuSR

Data rate and quality

Enhanced frequency response

Low moment systems

(reduced dimensionality, molecular systems, heavy fermion magnets...)

An explanation of screening

Low moment systems

(reduced dimensionality, molecular systems, heavy fermion magnets...)

Count rate increased by a factor of 20

More data

Better quality data

Case study: molecular magnets

$[Cu(pyz)_2HF_2]X_2$ ($X=BF_4$, CIO_4 , PF_6 , AsF_6 , SbF_6)

Highly tunable, self-assembled nanostructures with 2D character

First coordination polymer containing the HF_2^- ion (strongest known hydrogen bond!)

2D square lattice of $Cu^{2+} S=1/2$ spins

Linked by HF_2 to form 3D structure (with X anions in the cubes)

$Cu(ClO_4)_2(pyz)_2$

μ^+ SR results

Another 2D square lattice Heisenberg system with $J=17.8~\rm K$ Magnetic order detected with oscillations at three frequencies $T_{\rm N}{=}4.2(1)~\rm K$

T Lancaster *et al.* Phys. Rev. B **75**, 094421 (2007)

$[Cu(pyz)_2HF_2]X_2$: trends across the series Tetrahedral vs. octahedral anion in the cubes

Goddard et al. New J. Phys. 10 083025 (2008)

$[Cu(pyz)_2HF_2]X_2$: trends across the series

Tetrahedral vs. octahedral anion in the cubes

Goddard *et al.* New J. Phys. **10** 083025 (2008) $^{|J'/J|} \approx 10^-$

2D molecular magnets

Evaluation of the separation of several systems

Steele et al., PRB (2011)

With Super-MuSR

High statistics results

More throughput

With Super-MuSR

High statistics results

More throughput

Extension to other systems...

[Ni(HF₂)(3-Clpy)₄]BF₄: the hunt for Haldane chains

Well separated S=1 chains

J=4.9 K, *D*≈4 K

Good evidence for gapless, disordered ground state

Manson et al., (2012)

[Ni(HF₂)(3-Clpy)₄]BF₄: the hunt for Haldane chains

Bring these S=1 systems into the ISIS time window

Larger moment systems

The most beautiful magnetic spectrum ever measured?

$AgNiO_2$: a new charge ordered state of matter?

Orbital degeneracy lifted via a charge ordering mechanism

This gives rise to a well defined magnetic structure

Muons see this, but show an anomalous T dependence

EuO is THE localized ferromagnet

S.J. Blundell *et al.* PRB **81**, 092407 (2010)

Dynamic and static magnetism combined

Case study: the skyrmion lattice

Franke et al., arXiv:1806.00412 (2018)

Reentrant skyrmion phases in Zn-doped Cu₂OSeO₃

H.C. Wu et al., Scientific Reports 5, 13579 (2015)

Introducing disorder

Stefancic et al., arXiv:1807.04641 (2018)

Introducing disorder

Stefancic et al., arXiv:1807.04641 (2018)

Introducing disorder

Stefancic et al., arXiv:1807.04641 (2018)

Future directions in quantum magnetism:

Systems built from dimers

Isolated dimers

Weakly coupled dimers

In an idealized case we expect a quantum phase transition to XY magnetic order

Weakly coupled dimers

In an idealized case we expect a quantum phase transition to XY magnetic order

Spin liquids

Frustration and fluctuations lead to an exotic ground state

Spin liquid state in κ -ET₂Cu₂(CN)₃

Ground state order suppressed by QM fluctuations

Field induced quantum phase transition

Critical behaviour consistent with bosonic or fermionic excitations

Spin ladders as intermediate systems

(Hpip)₂CuBr₄: strong run spin ladder

 $J_{\text{leg}}/J_{\text{rung}} = 0.25$

 $(C_5H_{12}N)_2CuBr_4$

Generic phase diagram

Diffusion and dynamics

arXiv:1806.09402

Two predicted regimes of spin ladder behaviour:

Strong rung: repulsive interactions, $1/T_1 \sim T^{\alpha}$, $\alpha > -0.5$

Strong leg: attractive interactions, $1/T_1 \sim T^{\alpha}$, $\alpha < -0.5$

Power law in spin relaxation $1/T_1$ gives an insight into interactions

M. Jeong, et al., Phys. Rev. Lett. 111, 106404 (2013).

 $(C_7H_{10}N)_2CuBr_4$

 $J_{\text{leg}}/J_{\text{rung}}=2.3$

 $B_{c} = 3.0 \text{ T}$

J.S. Möller *et al.*, Phys. Rev. B **95** 020402(R) (2017)

And finally...

Muon sites and DFT

Muon-fluorine entangled states in molecular magnets

Above T_N entanglement allows us to locate the muon site

T Lancaster et al. PRL 99 267601 (2007)

(Hpip)₂CuBr₄: strong run spin ladder

 $J_{\text{leg}}/J_{\text{rung}} = 0.25$

 $(C_5H_{12}N)_2CuBr_4$

Muon sites from DFT

1) Along the ladder rungs

2) Along the ladder legs

3) Inside the CuBr₄ tetrahedra

In each case the muon forms a $Br - \mu^+ - Br$ state

arXiv:1806.09402

Muon sites DFT analysis

Muon site 2

Making local singlets?

Hyperfine enhancement?

Muon sites from DFT

1) Along the ladder rungs

2) Along the ladder legs

3) Inside the CuBr₄ tetrahedra

In each case the muon forms a $Br - \mu^+ - Br$ state

Rung site disrupting a dimer

Conclusions

Super-MuSR will greatly expand the ISIS capability in magnetism

Data quality and quantity will be enhanced in smallmoment systems

Increased frequency resolution will open up the variety of magnets

Data rate will transform studies of dynamics

Muon site determination frequently rests on high statistics data sets

Acknowledgements

Durham: Rob Williams, Fan Xiao, Peter Hatton, Thomas Hicken, Ben Huddart, Kévin Franke

ISIS: Francis Pratt

Oxford: Stephen Blundell, Thorsten Hesjedal, Shilei Zhang

PSI: Christian Rüegg, Simon Ward, Tatsuo Goko, Robert Scheuermann, Zaher Salman, Thomas Prokscha, Andreas Suter.

Warwick: Geetha Balakrishnan, Monica Ciomaga Hatnean, Ales Stafancic

Eastern Washington: Jamie Manson