A Revisit to the Ordered State of Cu-spins in $\mathrm{La}_{2} \mathrm{CuO}_{4}$
 A Quantum Approach to the Muon Sites

Muhammad Redo Ramadhan ${ }^{1,2}$

Irwan Ramli³, Azwar Manaf², Budhy Kurniawan², Isao Watanabe¹,2,3
${ }^{1}$ Meson Science Lab., RIKEN Nishina Center, Japan
${ }^{2}$ Universitas Indonesia, Indonesia
${ }^{3}$ Hokkaido University, Japan

Why do we need to reconsider muon sites?

$\mathrm{La}_{2} \mathrm{CuO}_{4}$ (LCO)

9-Positions

Dipole :
H, T1, T2, T3
Ab-initio :
M, U1, U2, S1, S2

References:

1) $\mathrm{H} \rightarrow$ Hitti et al. (1990)
2) $M \rightarrow$ McMullen et al. (1991)
3) $\mathrm{T} \rightarrow$ Torikai et al. (1993)
4) $\mathrm{U} \rightarrow$ Sulaiman et al. (1993)
5) $S \rightarrow$ Saito et al. (1991)

No unified method to find muon sites yet!!

Flowchart of Our Calculations

Initial Conditions, Crystal and Spin Structure

Crystal Structure

- Orthorhombhic $\mathrm{La}_{2} \mathrm{CuO}_{4}$
- Single Crystal

$$
\begin{aligned}
& a=5.333 \\
& b=5.419 \\
& c=13.095
\end{aligned}
$$

Spin Structure

- Antiferromagnetic
- $0.5 \mu_{\mathrm{B}} / \mathrm{Cu}$-atom
- Spin aligned to b-
 direction

Band Structure

Magnetic Moment of Cu atoms

	s	p	d	f
$1-0.013$	-0.014	0.637	total	
2	0.013	0.014	-0.637	0.000

Density of States

- Antiferromagnetic with $0.61 \mu \mathrm{~B} / \mathrm{Cu}$ atom
- 1.8 eV gap

Bandstructure

Electrostatic Potential

Isoruface at 1000 meV

Zero-Point Vibrational Energy of μ

Muon probability density
Solving Schrodinger equation for muon

$$
\left[-\frac{\hbar^{2}}{2 m_{\mu}}\left(\frac{\delta^{2}}{\delta x^{2}}+\frac{\delta^{2}}{\delta y^{2}}+\frac{\delta^{2}}{\delta z^{2}}\right)+V_{\mu}(x, y, z)\right] \psi_{\mu}(x, y, z)=E_{Z P E} \psi_{\mu}(x, y, z)
$$

* Zero point vibrational energy

Muon probability density $\rightarrow\left\langle\boldsymbol{\psi}_{\mu} \mid \psi_{\mu}\right\rangle$

Conclusions

- M2 (nearest to the apical oxygen) and M3 (near planar oxygen) already shows a good agreement to the experimental results
- M1 has slight difference (~25 \%). The reason is still on discussion

