
AGENDA

• Principal sub-projects – minimum viable product

• Technical update

• Project plan and progress against milestones

• Project finances

Project Management Board
Meeting 11 Dec. 2020

PACE Goals – three sub-projects, minimum viable product

• Interface to third party simulation codes
• SpinW (now a separate project)
• Phonon calculations (Euphonic)
• API for generic user (Matlab, Python and C++), and 3rd party codes

• Optimisation and resolution convolution algorithms
• Parallel Tobyfit
• New approaches

• Performance and usability framework for
• parallel and distributed computing architecture :

• DAaaS, SCARF, but will also work on high end laptop/desktop
• Matlab and Python user interface
• Handling large datasets out of memory
• Generic projections : user-defined

PACE

ALC “SpinWCore / libMcPhase” Project
 Developer will start Dec 14. 2020

 Deliverables:

 Parallelised compiled (C++) core computation routines for SpinW
(rewrite of spinwave.m, 6 months)

 Rewrite of core parts of McPhase as a C++ library with a Python
interface (libmcphase, 18 months)

 Funding from Ada Lovelace Centre to Mar 2022 (15 months) then
developer will be funded by ISIS.

 In scope:

 Full CI for SpinW/SpinWCore and libMcPhase (both projects need
new unit/system tests and servers setup)

 Not in scope: [of the ALC project funding, not of PACE overall]

 Additional SpinW features (e.g. Python interface, user requests)

 Integration with other PACE projects (Horace, Brille).

PACE

SpinW specifics
 Currently unmaintained (lack of dedicated developer).

 Long term goal is to convert to Python.

 Currently a functioning Python interface using compiled Matlab exists.

 C++ SpinWCore might be basis for new Python version, but will need dedicated developer

 Urgently needs comprehensive set of unit / system tests and CI infrastructure (will be met by ALC project).

 Could use cloud CI (e.g. Circle, Travis) but those only provide Matlab for Linux instances.

 Integration with PACE:

 Existing Horace interface within SpinW codebase (will stay).

 New Brille interface within SpinW codebase (now implemented by MDL).

 Many of new features asked for by users (multi-k structures, multi-magnon continuum, fitting powder data) but
lacking developer effort.

PACE

Euphonic: Since March 20
• Major refactor of Euphonic’sAPI completed (more user friendly and

maintainable, easy handling of units, can output any Euphonic object
as .json file)

• Addition of spherical averaging tools for powder averaging
(contributed by Abinsdeveloper Adam Jackson)

• More robust and user friendly command-line tools e.g. dispersion.py is
now euphonic-dispersion

• Has been successfully validated against other computational codes

• Graduate effort (James King) –3 month project improving testing
• Migrating to Pytest
• Adding Windows/Mac continuous integration nodes

PACE

Euphonic: Future Work
• Work towards publication on Euphonic

• Alongside publication aiming for:
• 1.0.0 release of Euphonic
• Release version of Euphonic-Horace-Interface

• Benchmark Euphonic performance against itself, CASTEP phonon tools,
other codes etc: much has been done but it needs to be formalized

• Allow use of brille from Euphonic

• New integration repository for
Horace-Euphonic interaction –
Basis for testing, regressions

PACE

brille library and resolution

• Refactoring, handling improvements:
• Proper handling of symmetry for interpolated vectors, matrices, and phonon eigenvectors
• Equivalent mode caching
• Some consequent performance impact, offset by….
• Shared memory arrays

• Usability:
• C++ library namespace encapsulation
• Automated Python module build and publish pipeline
• Automated hybrid Sphinx and Doxygen documentation

• AI with SpinW
• Training time for neural nets reduced by order of magnitude to feasible size
• Now 7000 cpu-hours

• Staffing:
• Greg Tucker (PDRA) leaving for ESS Lund, will continue to work on brille at a reduced level
• Process of formalising this ongoing

Keith T. Butler, Manh Duc Le,
Jeyarajan Thiyagalingam,
Toby G. Perring,
"Interpretable, calibrated
neural networks for analysis
and understanding of
inelastic neutron scattering
data",
https://arxiv.org/abs/2011.0
4584

PACE

- Matlab instrument component and detector classes

- rewritten and incorporated into a refactored Tobyfit.
- Now part of new SQW object redesign (see framework, next slide)

- Parameter optimisation application

- Design document finalised.
- Generalises the fit functions, allows for different swappable core fitting engines.
- Allows construction of more complex fit function

- Can be implemented once the core SQW object rewrite is completed. The legacy Tobyfit
version has been removed

Tobyfit refactoring preparation

PACE

Framework
• Support for large datasets (not fitting in memory) – implementation in progress

• Dataset stored in temporary files, loaded into memory piece by piece for processing, with the results written back to file.
• Requires conversion of large number of operations .

• Slows overall operation due to interaction with file system – price for working above memory limit.
Algorithm-calling protocol ensures users know when this degradation is happening. 80% complete

• MPI framework developed to support the parallelisation of a number of operations to significantly
improve performance

• Provides parallel inter-process communication through multiple frameworks, supporting file-based messages, the MATLAB Parallel toolbox and
MPI framework

• Complete. Used to implement parallelization of SQW object generation (now in testing). Cut and symmetrize
operations now planned

• Compiled MATLAB now available
• Compiled Matlab instances enable licence free operation e.g . from Python front-end

• Continuous Integration (CI) set up using ANVIL service - Captures cross-platform build and test
functionality previously missing or executed by hand

• Creates builds of Horace and Herbert for multiple MATLAB versions and multiple OS (initially Linux and Windows, extending to Mac, iDAaaS and
SCARF). Now allows coupling of non-master versions of Herbert and Horace (for new SQW, next slide).

• Now also publishes documentation and release notes.
• Version numbering more systematic, (=semantic versioning). Separately Euphonic and Brille are moving

towards common semantic versioning, but Euphonic and Horace are not directly couped – coupling is
between both of them and the Horace-Euphonic interface

PACE

Framework
SQW
object
redesign

SQW object image object (DND object)

Design at
March 2020

Current
Design

• Design for major update of the
SQW object complete –
implementation in progress

• Supports interaction with the other
PACE projects; eases future
maintenance and development

• Supports current functionality and
known new requirements e.g. richer
Instrument and Detector information
required for resolution convolution.and
compiled MATLAB

• Implementation found to be
more complex due to
interdependency between
classes, and restarted as a
complete rewrite to reduce
inter-class coupling.

PACE

Project plan

D4

Main
categorySub-category

Task with progress and current date

Continuous Task

Task needing further
definition

Milestone with
deliverable

Deliverable from last
report

D4D1a

PACE

D9

D1b
D1c

D6

D5

D8

D7

D16

D15 Optimised interfaces to
specific 3rd party codes as needed

D4

Main
categorySub-category

Task with progress and current date

Continuous Task

Task needing further
definition

Milestone with
deliverable

Deliverable from last
report

PACE

D4

Main category

Sub-category

Task with progress and current date

Continuous Task

Task needing further definition

Milestone with deliverable

Deliverable from last report

D17/18/19

PACE

Project finances

PACE

Thank you!

brille:

Goals:
• irreducible Brillouin zone polyhedral for any space group
• Interpolation for any scalar, vector or matrix quantity for speed

Features:
• C++/OpenMP with Python interface
• Interface:

• Can drive modelling codes (as by Euphonic)
• Can be driven by modelling codes (as by SpinW development version)

• Reduces up-front calculation by Fourier interpolation of force constant
matricies (x 1/48 for simple cubic)

• Circumvents the interpolation problem across high symmetry
directions/planes

Brille library and resolution

brille implements a hybrid grid/mesh:

 Uses regular grid
where possible

 Boundary cells use
n-simplex mesh

degeneracy accidental

distinct eigenvectors
help identification

eigenvector mixing
prevents identification

h in (hk0) h in (hk0)

k
in

 (h
k0

)

Q=(hk0) E = 4.1 meV

niobium phonons
Resolution convolution:

• Refactored existing Matlab instrument and detector classes
• Fast lookup for random sampling from instrument components

Parameter optimisation:

• ExtendsDesign calls for new classes to
• wrap user-defined model functions with metadata
• provide interface between models and parameter optimisers

• Planned support for models which take Q, (Q,E), sqw, or plotting axes as
input

• Desire to support multiple parameter optimisation engines
• local minimisers, e.g., Levenberg-Marquardt
• global minimisers, e.g., NLOpt
• derivative-free optimisers, e.g., DFO-LS

• Full details at https://github.com/pace-neutrons/pace-
developers/blob/master/optimisation/design/Model_Optimisation_Design.md

Brille library and resolution

PACE Goals
• Optimisation of HORACE through

• Parallelization for multiple core computers and distributed computing, Data
Analysis as a Service (DAaaS) and SCARF at STFC.

• Handling of large datasets out of memory

• Parallelisation of TOBYFIT for the framework

• Computation of S(Q,) from phonons from force constant matrix (CASTEP, GULP,
Phonopy)

• Parallelisation of SpinW (spin wave modelling) – now a separate project

• Generic Application Programming Interface (API) to user function (Matlab,
Python, compiled C++) and third party modelling codes

• Construction of a GUI based ‘workbench’ for managing analysis of data with
refinement of parameters

• Mantid based manipulation and GUI based visualisation of powder data

• Handover as a product for operations at the project end

PACE

