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PACE Goals – three sub-projects, minimum viable product

• Interface to third party simulation codes
• SpinW (now a separate project)
• Phonon calculations (Euphonic)
• API for generic user (Matlab, Python and C++), and 3rd party codes 

• Optimisation and resolution convolution algorithms
• Parallel Tobyfit
• New approaches

• Performance and usability framework for
• parallel and distributed computing architecture :

• DAaaS, SCARF, but will also work on high end laptop/desktop
• Matlab and Python user interface
• Handling large datasets out of memory
• Generic projections : user-defined
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ALC “SpinWCore / libMcPhase” Project
 Developer will start Dec 14. 2020

 Deliverables:

 Parallelised compiled (C++) core computation routines for SpinW
(rewrite of spinwave.m, 6 months)

 Rewrite of core parts of McPhase as a C++ library with a Python 
interface (libmcphase, 18 months)

 Funding from Ada Lovelace Centre to Mar 2022 (15 months) then 
developer will be funded by ISIS.

 In scope:

 Full CI for SpinW/SpinWCore and libMcPhase (both projects need 
new unit/system tests and servers setup)

 Not in scope: [of the ALC project funding, not of PACE overall]

 Additional SpinW features (e.g. Python interface, user requests)

 Integration with other PACE projects (Horace, Brille).
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SpinW specifics
 Currently unmaintained (lack of dedicated developer).

 Long term goal is to convert to Python.

 Currently a functioning Python interface using compiled Matlab exists.

 C++ SpinWCore might be basis for new Python version, but will need dedicated developer

 Urgently needs comprehensive set of unit / system tests and CI infrastructure (will be met by ALC project).

 Could use cloud CI (e.g. Circle, Travis) but those only provide Matlab for Linux instances.

 Integration with PACE:

 Existing Horace interface within SpinW codebase (will stay).

 New Brille interface within SpinW codebase (now implemented by MDL).

 Many of new features asked for by users (multi-k structures, multi-magnon continuum, fitting powder data) but 
lacking developer effort.
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Euphonic: Since March 20
• Major refactor of Euphonic’sAPI completed (more user friendly and 

maintainable, easy handling of units, can output any Euphonic object 
as .json file)

• Addition of spherical averaging tools for powder averaging 
(contributed by Abinsdeveloper Adam Jackson)

• More robust and user friendly command-line tools e.g. dispersion.py is 
now euphonic-dispersion

• Has been successfully validated against other computational codes

• Graduate effort (James King) –3 month project improving testing
• Migrating to Pytest
• Adding Windows/Mac continuous integration nodes
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Euphonic: Future Work
• Work towards publication on Euphonic 

• Alongside publication aiming for:
• 1.0.0 release of Euphonic
• Release version of Euphonic-Horace-Interface

• Benchmark Euphonic performance against itself, CASTEP phonon tools, 
other codes etc: much has been done but it needs to be formalized

• Allow use of brille from Euphonic

• New integration repository for
Horace-Euphonic interaction –
Basis for testing, regressions
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brille library and resolution

• Refactoring, handling improvements:
• Proper handling of symmetry for interpolated vectors, matrices, and phonon eigenvectors
• Equivalent mode caching
• Some consequent performance impact, offset by….
• Shared memory arrays

• Usability:
• C++ library namespace encapsulation
• Automated Python module build and publish pipeline
• Automated hybrid Sphinx and Doxygen documentation

• AI with SpinW
• Training time for neural nets reduced by order of magnitude to feasible size
• Now 7000 cpu-hours

• Staffing:
• Greg Tucker (PDRA) leaving for ESS Lund, will continue to work on brille at a reduced level
• Process of formalising this ongoing

Keith T. Butler, Manh Duc Le, 
Jeyarajan Thiyagalingam, 
Toby G. Perring, 
"Interpretable, calibrated 
neural networks for analysis 
and understanding of 
inelastic neutron scattering 
data", 
https://arxiv.org/abs/2011.0
4584

PACE



- Matlab instrument component and detector classes 

- rewritten and incorporated into a refactored Tobyfit. 
- Now part of new SQW object redesign (see framework, next slide)

- Parameter optimisation application

- Design document finalised. 
- Generalises the fit functions, allows for different swappable core fitting engines.
- Allows construction of more complex fit function

- Can be implemented once the core SQW object rewrite is completed. The legacy Tobyfit
version has been removed

Tobyfit refactoring preparation
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Framework 
• Support for  large datasets (not fitting in memory) – implementation in progress

• Dataset stored in temporary files, loaded into memory piece by piece for processing, with the results written back to file.
• Requires conversion of large number of operations .

• Slows  overall  operation due to interaction with file system – price for working above memory limit.  
Algorithm-calling protocol ensures users know when this degradation is happening. 80% complete

• MPI framework developed to support the parallelisation of a number of operations to significantly 
improve performance

• Provides parallel inter-process communication through multiple frameworks, supporting file-based messages, the MATLAB Parallel toolbox and 
MPI framework

• Complete. Used to implement parallelization of SQW object generation (now in testing). Cut and symmetrize 
operations now planned

• Compiled MATLAB now available
• Compiled Matlab instances enable licence free operation e.g . from Python  front-end

• Continuous Integration (CI) set up using ANVIL service - Captures cross-platform build and test 
functionality previously missing or executed by hand

• Creates builds of Horace and Herbert for multiple MATLAB versions and multiple OS (initially Linux and Windows, extending to Mac, iDAaaS and 
SCARF). Now allows coupling of non-master versions of Herbert and Horace (for new SQW, next slide).

• Now also publishes documentation and release notes. 
• Version numbering more systematic, (=semantic versioning). Separately Euphonic and Brille are moving 

towards common semantic versioning, but Euphonic and Horace are  not directly couped – coupling is 
between both of them and the Horace-Euphonic interface
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Framework
SQW 
object 
redesign

SQW object image object   (DND object)

Design at 
March 2020

Current 
Design

• Design for major update of the 
SQW object complete –
implementation in progress

• Supports interaction with the other 
PACE projects; eases future 
maintenance and development

• Supports current functionality and 
known new requirements e.g. richer 
Instrument and Detector information 
required for resolution convolution.and
compiled MATLAB

• Implementation found to be 
more complex due to 
interdependency between 
classes, and restarted as a 
complete rewrite to reduce 
inter-class coupling. 
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Project plan



D4

Main  
categorySub-category

Task with progress and current date

Continuous Task

Task needing further 
definition

Milestone with 
deliverable

Deliverable from last 
report

D4D1a
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D1b
D1c

D6

D5

D8

D7

D16

D15 Optimised interfaces to 
specific 3rd party codes as needed
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Deliverable from last 
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Task with progress and current date
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Task needing further definition
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D17/18/19
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Project finances



PACE

Thank you!



brille: 

Goals:
• irreducible Brillouin zone polyhedral for any space group
• Interpolation for any scalar, vector or matrix quantity for speed

Features:
• C++/OpenMP with Python interface
• Interface:

• Can drive modelling codes (as by Euphonic)
• Can be driven by modelling codes (as by SpinW development version)

• Reduces up-front calculation by Fourier interpolation of force constant 
matricies (x 1/48 for simple cubic)

• Circumvents the interpolation problem across high symmetry 
directions/planes

Brille library and resolution

brille implements a hybrid grid/mesh:

 Uses regular grid 
where possible

 Boundary cells use 
n-simplex mesh

degeneracy accidental

distinct eigenvectors 
help identification

eigenvector mixing 
prevents identification
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Resolution convolution:

• Refactored existing Matlab instrument and detector classes
• Fast lookup for random sampling from instrument components

Parameter optimisation:

• ExtendsDesign calls for new classes to
• wrap user-defined model functions with metadata
• provide interface between models and parameter optimisers

• Planned support for models which take Q, (Q,E), sqw, or plotting axes as 
input

• Desire to support multiple parameter optimisation engines
• local minimisers, e.g., Levenberg-Marquardt
• global minimisers, e.g., NLOpt
• derivative-free optimisers, e.g., DFO-LS

• Full details at https://github.com/pace-neutrons/pace-
developers/blob/master/optimisation/design/Model_Optimisation_Design.md

Brille library and resolution



PACE Goals
• Optimisation of HORACE through 

• Parallelization for multiple core computers and distributed computing, Data 
Analysis as a Service (DAaaS) and SCARF at STFC.

• Handling of large datasets out of memory 

• Parallelisation of TOBYFIT for the framework

• Computation of S(Q,) from phonons from force constant matrix (CASTEP, GULP, 
Phonopy)

• Parallelisation of SpinW (spin wave modelling) – now a separate project

• Generic Application Programming Interface (API) to user function (Matlab, 
Python, compiled C++) and third party modelling codes

• Construction of a GUI based ‘workbench’ for managing analysis of data with 
refinement of parameters

• Mantid based manipulation and GUI based visualisation of powder data

• Handover as a product for operations at the project end
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