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Analysing the results : radial distribution function 
Molecular dynamics provides a trajectory for the entire system as a set of 

structures, or frames, f, rather than a single optimised geometry. 

Structural features and properties can be averaged over this data. 

Some features are straightforward, e.g. the tilt angle of waters in a Zn2+ 

solvation shell shown below. 

E. Cauët et al., J. Chem. Phys. 132, 194502, (2010) 



This simulation 

was a comparison 

of fully ab initio 

MD and QM/MM. 

Graph shows angle 

distribution for 

bisector of H-O-H 

with O-Zn. 



The first thing is to locate the PLD within CC3. 

Use crystal structure of CC3 to compare 
against 3D pore network. Established 
that the cage was limiting the PLD, 
therefore one cage isolated. 

This cage was examined and the atoms involved in creating the narrow neck in 
the pore topology identified; the circumference of this circle was 3.62 Å – this 
is the PLD. 

We know that CC3 has a 3D 
diamondoid network. 

CC3 RESEARCH, DAN HOLDEN & ABBIE TREWIN, LIVERPOOL 

D. Holden, K. E. Jelfs, A. I. Cooper, A. Trewin, and D. J. Willock, 
J. Phys. Chem. C, 116 (31), 16639–16651, (2012).  



The PLE could then be compared to the diameter of the gases:  

CC3 RESEARCH 

This now suggests that all the gases, save SF6, are small enough to diffuse through CC3. 

D. Holden, K. E. Jelfs, A. I. Cooper, A. Trewin, and D. J. Willock, 
J. Phys. Chem. C, 116 (31), 16639–16651, (2012).  
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   The bulk of these are in the form of Correlation Functions : 
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System Properties: Dynamic (1) 
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Typical Velocity 

Autocorrelation 

Function 

Example: Velocity autocorrelation function. 

Range up to 1.0, all velocities identical to time 

zero. 

For velocity the average overall must be zero. 

Decays as velocities lose correlation through 

randomising collisions. 

Related to self diffusion coefficient:  

Note : Multiple time 

origins implied. 

dtvtvD 
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Fick's law states that the flux, J, of the diffusing species is 

proportional to the negative gradient in the concentration of that 

species: 

 

 

The constant of proportionality, D, is the diffusion coefficient. 

 

This is a macroscopic model of diffusion and relates the flux of 

particles to a concentration gradient. 

 

Diffusion of a labelled species among otherwise identical particles 

is called self diffusion.  

 

We can label particles experimentally by altering nuclear spin and 

then following the labelled species with time, ( pFG-NMR ). 

 

Fick's law  

cDJ 
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In a sample of fluid, if we marked 

some of the molecules and then 

monitored their distribution as a 

function of time. 
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The concentration itself decays 

symmetrically about the origin, 

however its second moment 

moves away from the origin with 

time. 

In 3-dimensions can be shown 

that: 
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In a simulation we are ideally positioned 

to work out the self diffusion coefficient, 

since we can follow any particle we 

choose. 
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Taking the concentration as a measure of probability we can take 

the integral of the left hand side as the mean square displacement 

for a molecule: 
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System Properties: Dynamic (2) 

Mean Square Displacement, MSD. 

time (ps) 

Solid: atoms confined to lattice sites. 

Liquid: 

random walk 

diffusion 

Ballistic transport 

region 
Ballistic transport occurs when not enough 

collisions have taken place to establish 

random walk. 

Slope of MSD vs time gives self 

diffusion coefficient (Einstein 

relation): 
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We have seen that Newton’s Laws conserve energy and so the basic MD 
procedure samples the NVE ensemble. 

 

Extended systems are required to handle: 

 

The canonical ensemble (NVT)  

The isotropic isothermal-isobaric ensemble (NPT) 

 

To do this we will look at equations of motion for systems of particles coupled to 
thermal baths with which energy can be exchanged to maintain T (thermostat) 
and/or explicit introduction of degrees of freedom for the system volume to allow 
constant pressure (barostat). 

Extended Systems 

Controlling 

reference 

system 

References: 
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UConstant Pressure MD 

Suppose we want to run an MD 

simulation with the system subject to 

some external pressure, P. 

We must adapt the equations of 

motion to allow fluctuations in the 

system volume in response to P. 

ii qVr 3/1 Bring cell volume into atom 

co-ordinates. 

KE and PE of particles “KE and PE” of cell. 

The cell mass, M, is the external mass generating the pressure, P, and has to 

be set. 
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In the constant pressure dynamics we introduced a scaling 

of the positional co-ordinates based on the volume of the 

system so that dynamical variables could be associated 

with the cell volume. 

For constant temperature we scale the momenta so that 

the temperature of the system can be controlled by a new 

dynamical variable, s. 
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Constant Temperature MD 

ii rq 

KE and PE of particles “KE and PE” of thermostat. 

Where T is the set temperature and the mass, MT, and constant g control the 

exchange of energy with the heat bath. 

Heat 

exchange.  b
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