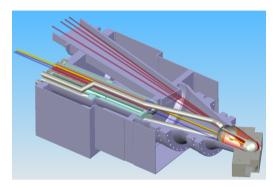
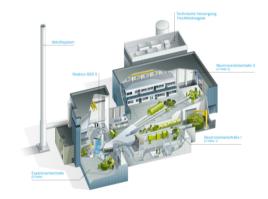


Scientific-technical infrastructure for the research with neutrons and prominent projects at Helmholtz-Zentrum Berlin

Axel Rupp Helmholtz-Zentrum Berlin für Materialien und Energie





- HZB Facility Overview
 - Large Scale Facilities
 - Neutron Instruments
- Organisational Structure
- Scientific-Technical Capabilities
 - User Service
 - Central Services
- Recent and ongoing Projects
 - New Cold Source Moderator Cell
 - Neutron Guide Upgrade
- Project Management

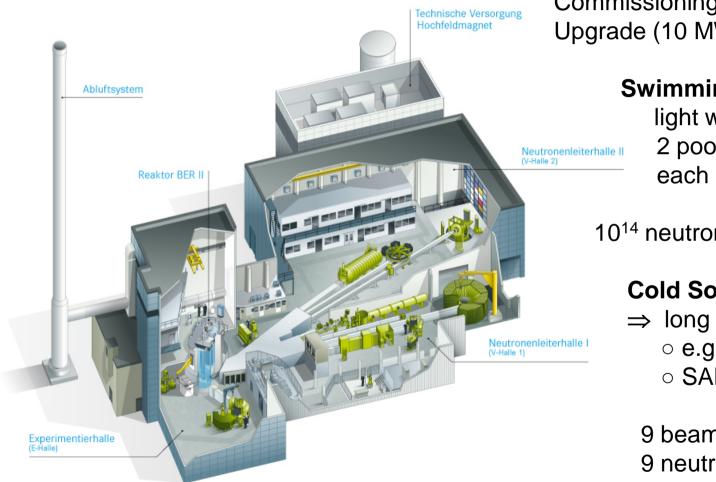
•Summary

Axel Rupp, Design and Engineering of Neutron Instruments Workshop, Rutherford Appleton Laboratory, Didcot, UK - 17-19 September 2012

HZB operates two large scale facilities for the investigation of matter which complement each other:

Research reactor BER II

- ⇒ Neutrons 0.9Å < λ < 30Å (cold source)
- Use: Mainly neutron scattering • Chemical analysis


Electron storage ring BESSY II

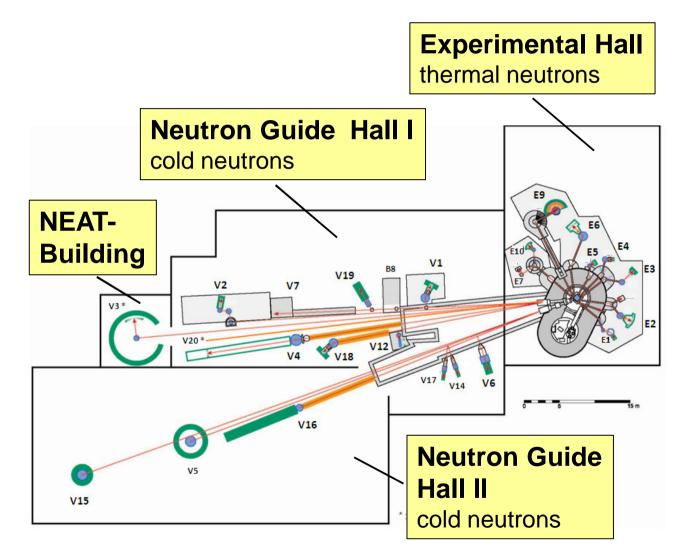
⇒ Photons (synchrotron radiation) 10pm (hard x-ray) < λ < 1mm (THz) pulse lenghts 100fs; 2ps; 50ps resolution 100pm 50 beamlines

Axel Rupp, Design and Engineering of Neutron Instruments Workshop, Rutherford Appleton Laboratory, Didcot, UK $\,-\,$ 17-19 September 2012

Commissioning (5 MW) 1973 Upgrade (10 MW) 1985 - 1991

Swimming pool reactor

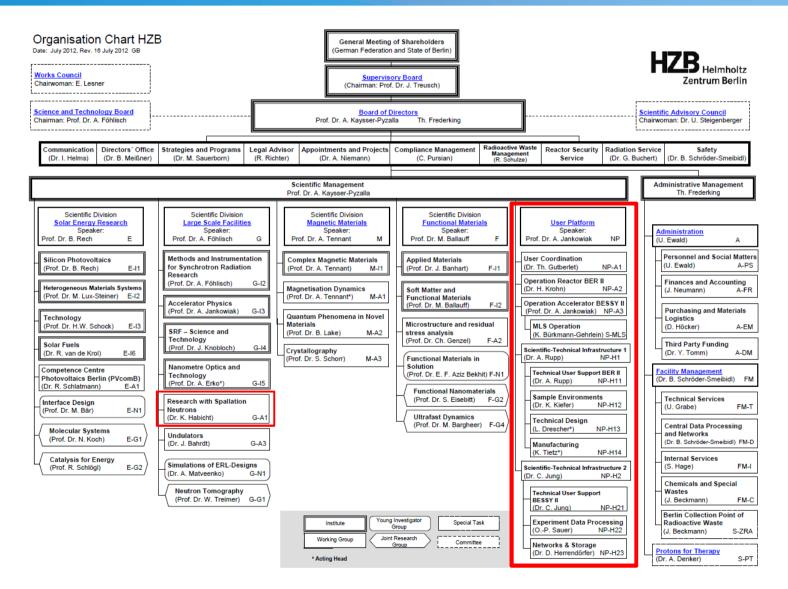
light water moderated 2 pools, each \emptyset 3.5m \times 11m


10¹⁴ neutrons cm⁻² s⁻¹ (core)

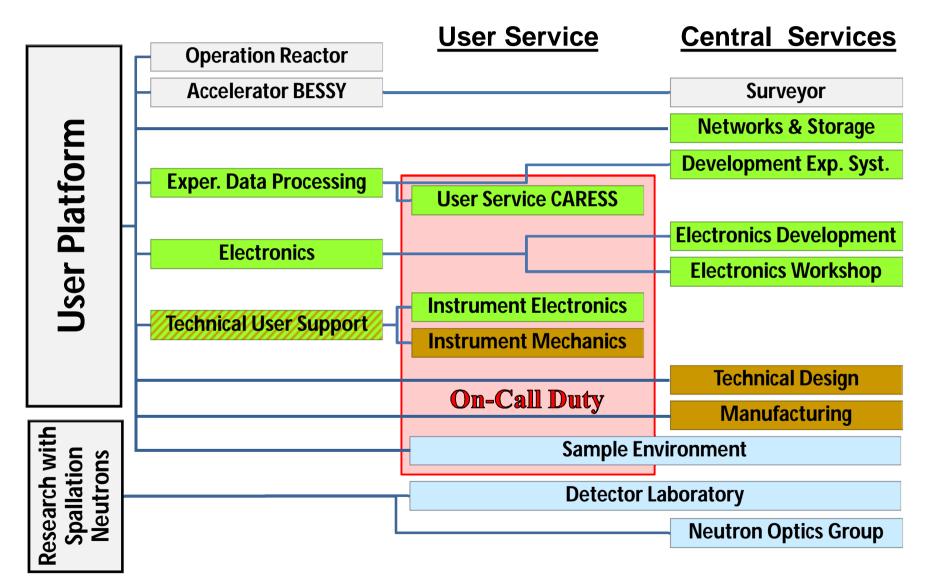
Cold Source

 \Rightarrow long wavelengths for o e.g. soft matter • SANS, TOF,

9 beam holes (thermal) 9 neutron guides (cold) 18 neutron instruments



Instrumentation


- 7 Diffractometers
- 1 Triple-axis Spectrometer
- 2 Reflectometers
- 3 SANS instruments
- 2 Instruments for stress studies
- 3 Tomographie / Radiographie instruments
- 3 Instruments under construction

Axel Rupp, Design and Engineering of Neutron Instruments Workshop, Rutherford Appleton Laboratory, Didcot, UK – 17-19 September 2012

Axel Rupp, Design and Engineering of Neutron Instruments Workshop, Rutherford Appleton Laboratory, Didcot, UK - 17-19 September 2012

Instrument Mechanics at BER II

10 technicians

All mechanical work to operate neutron instruments

- Maintenance of neutron instruments
- Technical user support
- Technical advice to scientists

Instrument Electronics at BER II

2 engineers, 1 electrical mechanic

Servicing all electronic systems to operate neutron instruments

- Maintenance of instrument electronics
- Technical user support
- Development of instrument electronics
- Technical advice to scientists

Sample Environment

8 (10) persons

Operating a broad range of equipment to provide different sample environments

- Temperature T = 30 mK 2000 K
- Magnetic field up to B = 17 T
- Pressure up to p = 1.5 GPa
- Mutually compatible

Lab for Magnetic Measurements

<u>Options:</u> heat capacity, heat conduction, magneto-caloric effect, magnetisation, resistivity, further under construction

DEGAS

Combines neutron scattering with in-situgas adsorption measurements

Technical Design

5 designers, 3 draughtsmen, 1 planning engineer, students

Design of sophistcated (sub)units for experimental setups

- Complete engineering data
- Documentation
- Monitoring of manufacturing
- Support of commissioning
- Support of the user service

Software: • Solid Works (CAD-software) • COMSOL-Multiphysics (FE)

External processing of orders

Purchase of materials

Education of students

Manufacturing

26 mechanics, up to 20 apprentices

Manufacturing and assembly of complex scientific apparatus

Service and component manufacture for radiation protection areas

Technologies:

- CNC machining
- Welding: (stainless) steel, aluminum
- Laser welding
- Laser cutting
- Water jet cutting
- Vacuum brazing
- Vacuum testing
- Ultrasonic cleaning

Electronics

- 3 development engineers, 5 electronic technicians
- Development of analog and digital boards
- Manufacture of electronic devices
- Installation and service of process control systems

Experiment Data Processing

- 5 (15) persons + students
- **Development experiment systems**
- **Development and servicing CARESS**

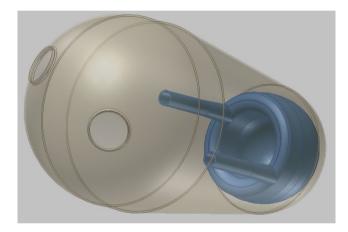
Development and implementation of motor control systems

Detector Laboratory

- 5 scientists and engineers
- **Detector development**
- BF₃ detectors, MSGC (¹⁵⁷GD/CsI converter)

Setup and commissioning of complete detection systems

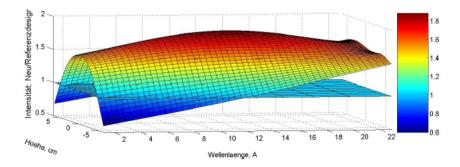
- Primary detectors
- Frontend electronics (amplifiers, discriminators)
- Interfaces for data aquisition
- Software: DeLiDAQ, Q-MesyDAQ


User support for a faultless operation

Advice to instrument scientists, simulation calculations

Exchange of the conical beamtube

Improved moderator cell design


MCNP optimized parameters:

- cell-core distance
- length of cylinder
- moderator thickness

planning phase	2006 - 2009
training	2009 – 2010
"hot" phase	2010 - 2012

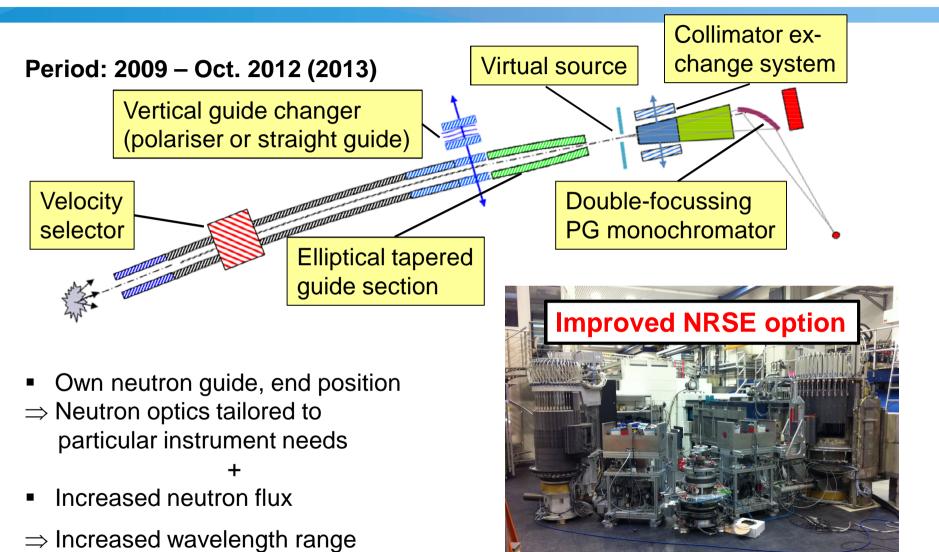
50-60 % brilliance gain

Axel Rupp, Design and Engineering of Neutron Instruments Workshop, Rutherford Appleton Laboratory, Didcot, UK – 17-19 September 2012

Period: 2009 – March 2012

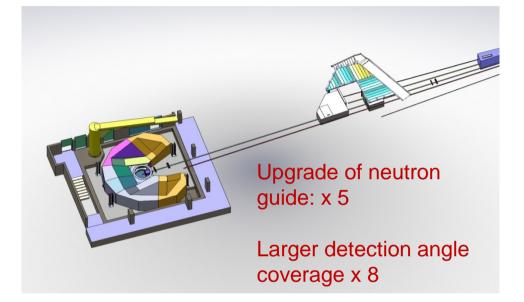
- 6 instead of 5 guides in NGH I
- Twice the total cross section
- m=3 coating instead of ⁵⁸ Ni (m=1.2)

\Rightarrow Overall gain factor: 2 - 5

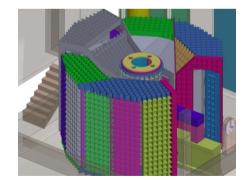

⇒ Total radiation increase by factor 20 \downarrow Sandwich-type shielding (bPE + Fe)

- Tight-fitting enclosure
- Higher radiation attenuation
- Enhanced flexibility

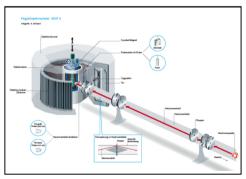
Axel Rupp, Design and Engineering of Neutron Instruments Workshop, Rutherford Appleton Laboratory, Didcot, UK $\,-\,$ 17-19 September 2012



 \Rightarrow Larger wavevector + energy transfer


Period: 2010 - 2015

- Novel Materials
- Mapping of excitations in single crystals
- Chemical activity in biomolecules
- Complex sample environments

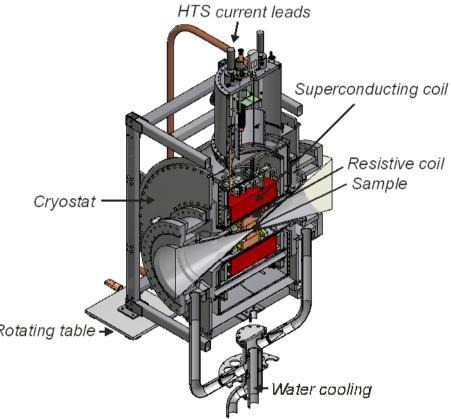


Position sensitive detectors with BF_{3.} Successful first tests

Non-magnetic detector chamber

New chopper system

New building


Axel Rupp, Design and Engineering of Neutron Instruments Workshop, Rutherford Appleton Laboratory, Didcot, UK - 17-19 September 2012

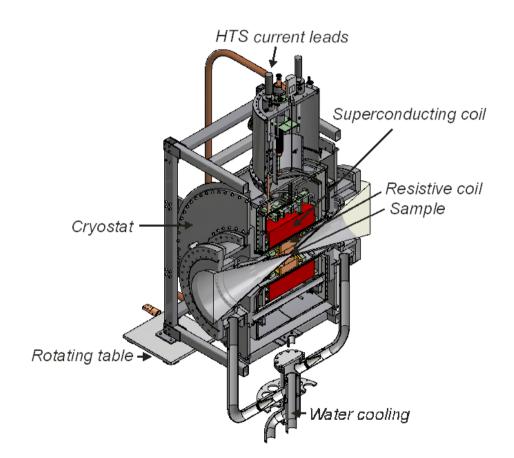
Period: 2007 - 2014

Hybrid magnet + infrastructure

		_
Central Field	> 25 T (> 30) T	
Bore	50 mm horizontal	
Opening Angle	Conical ends, 30°	
Power Resistive Insert	4 MW (8 MW)	
Field Homogeneity	< 0.5% (20 mm x 20 mm Vol.)	Cry
Operating Current	20 kA	
Magnetic Field of Resistive Insert	13 T – 19 T (4 MW / 8 MW)	
Magnetic Field of Supercond. Coil	13 T	Rotating
Height	~ 5 m	
Total Weight	~ 30 t]
Cold Mass (4.5 K)	~ 9 t]
		_

Period: 2007 – 2014

Challenges


Design and Construction

Series-Connected System:

- SC coil (Cable-in-Conduit)
- Resistive Bitter coil

Operation

- 20 kA DC power supply
- Helium refrigerator
- High pressure cooling water
- 4 / 8 MW cooling power

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

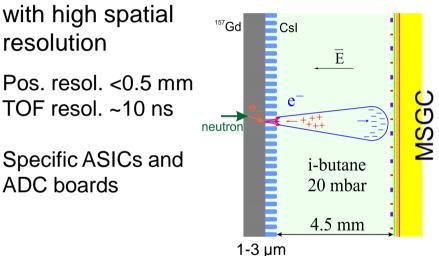
Period: 2010 – 2013

Testbeamline

Specific beamline to mimic the time structure of the ESS neutron pulses

Aim: Study components and instrument concepts under real conditions

Counter rotating chopper system


840rpm and 2520rpm

+ additional chopper systems

Variable distances!

Further activities:

¹⁵⁷Gd-CsI MSGC Detectors

Simulation Code Development

Concepts for Reflectometry, Neutron Radiography/Tomography, Extreme Sample Environment

Axel Rupp, Design and Engineering of Neutron Instruments Workshop, Rutherford Appleton Laboratory, Didcot, UK $\,-\,$ 17-19 September 2012

Conventional mangament tools

- Definition project structure
- Project schedule

Project coordinator

- Support of the project leader
- Coordination
- Controlling

Central document management system

Goals:

More efficiency due to

- Easier search
- Worldwide access
- Automatical communcation

... of information

Avoidance of errors by

- Centralisation
- Marking
- Traceability
 - ... of documents

Tested and applied at the High Field Magnet project

Large Scale Facilities

- <u>HZB operates two large scale facilities for the investigation of matter:</u> research reactor BER II + electron storage ring BESSY II
- BER II provides 18 instruments in the user service with neutrons

Organisational Structure

- The scientific-technical infrastructure is largely centralised in the User Platform

Scientific-Technical Capabilities

- <u>User service:</u> Instrument Service Groups, CARESS User Service, SE, Detector Laboratory
- <u>Central:</u> Technical Design, Manufacturing, Electronics, SE, Detector Lab, Experiment Data Processing, Network & Storage, Neutron Optics, Survey

Recent and ongoing Projects

- New Cold Source, NG Upgrade, FLEXX, NEAT, HFM, ESS-Design

Thanks to all colleagues from

Service group Instrument Mechanics Service group Instrument Electronics Sample Environment dept. Experiment Data Processing dept. Technical Design dept. Manufacturing dept. **Electronics group** Detector Laboratory Neutron Optics group Operation Reactor dept. Neutron Guide Upgrade project team FLEXX-Upgrade project team NEAT-Upgrade project team High Field Magnet project team ESS Design-Update-Phase teams

Thanks for providing with information:

K. Kiefer (SE) L. Drescher (Technical Design)

- Th. Wilpert (Detectors)
- O.P. Sauer (Experiment Data Processing)
- St. Welzel (Reactor)
- Th. Krist (Neutron Guide Upgrade)
- K. Habicht (FLEXX, ESS Design-Update)
- M. Russina (NEAT)
- P. Smeibidl (High Field Magnet)
- H. Ehmler (Document Management Syst.)