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Some Examples of the use of Quantum 

1) Repolarisation of tetrahedral muonium in silicon 

MuT in silicon is an isotropic muonium species which is mobile between cage-centred sites in the Si 

lattice.  At 100K, its hyperfine parameter A=2010MHz, and there is no dipolar part (D=0).  A 

repolarisation curve for this species can be generated in Quantum using the input parameters shown 

in Fig. 1. The repolarisation curve is generated by calculating the average asymmetry for each of a 

number of field values, and is shown in Fig. 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Quantum inputs for isotropic muonium in silicon. 

With the parameters as above, click ‘OK’.  If you just want the repolarisation curve, you can click ‘no’ 

or ‘cancel’ to all the various options for saving files, etc.  At the end of the calculation, you’ll get a 

plot in the ‘PGOLEDriver’ screen like the one in Fig. 2. Note the repolarisation starts at 0.5 at low 

field and finishes close to 1 at full field. 

 

 

2 spins – the muon 

and the electron 

 

hyperfine parameters – 

only A is needed in this case 

 

line 1: the 

muon 

line 2: the 

electron 

No averaging 

needed –  no 

preferred crystal 

directions as the 

hyperfine 

coupling is 

isotropic. No 

need to define 

B0 or initial pol’n  

directions. 

field sweep 

is needed 

for a 

repol’n 

curve 

field is to be 

swept from 

1G to 4500 

G with 10 G 

steps. Could 

do this 

logarith-

mically by 

ticking the 

‘Log’ box. 

‘standard’ 

calculation 

– no RF or 

hopping. 



2 

 

 

 

 

 

 

 

Fig. 2. Repolarisation curve for isotropic muonium in Si at around 100K. 

 

2. Repolarisation of bond centred muonium in Si 

In this case the muonium species, MuBC,  has axial symmetry, along a [111] bond direction.  The 
hyperfine parameter is expressed in terms of the isotropic (A) and dipolar (D) parts; Quantum 
defines these as: 

A=1/3(A⊥ + 2A∥); D=2/3(A⊥ - A∥), where A⊥ and A∥ are the perpendicular and parallel 
components of the hyperfine interaction. 

For MuBC in Si at low temperatures, A=-67.33MHz, D=50.52 MHz. 
 
In this case, it is necessary to define axes for both the muonium species, the applied field and the 
initial muon polarisation direction.   
 
 
Case 2a: [100] crystal 
In this case, we will assume that the field direction and initial muon polarisation direction area along 
[100].  This means that there are four equivalent [111] muonium species.  The Quantum input 
parameters are given in Fig. 3; the resulting repolarisation curve is given in Fig. 4. 
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Fig. 3. Quantum inputs for MuBC in Si, field along [100] 

 

 

 

 

 

 

 

 

Fig. 4. Repolarisation curve for bond-centred muonium in Si, [100] crystal. 
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Case 2b: [111] crystal 
In this case, we assume that the field and initial muon polarisation area along [111].  This means that 
there are is one muonium species which lies within bonds that are parallel to the field (species, or 
‘state’, 1), and three species lying within bond which are not parallel to the field direction (species, 
or state, 2).  This requires a slightly more complicated Quantum input scheme, as the two different 
muonium species need to be created.  This is done by: 

- changing the ‘Num of charge states or sites’ at the top of the input screen to 2. 
- entering the correct parameters for MuBC species 1 in Quantum’s ‘State 1’ 
- press ‘copy to others’, which duplicates State 1 to State 2 
- entering the correct parameters for MuBC species 2 in Quantum’s ‘State 2’ (just change the 

muonium state axis) 
- running Quantum – at which point it will ask for the relative state abundances. 

Quantum then does its calculations twice, once for each muonium species, and combines these 
according to the abundances given.   
(NB – for multiple states, as here, Quantum runs through the calculations for each state separately 
when in ‘standard’ and ‘RF’ modes – when in ‘hopping’ mode, all the states are combined into one 
big calculation.) 
 
See Fig. 6 for the Quantum input screens.  The resulting repolarisation plot is given in Fig. 5. 
 
 
 

 

 

 

 

 

 

 

 

Fig. 5. Repolarisation curve for bond-centred muonium in Si, [111] crystal. 
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Fig. 6a. Quantum input screens for repolarisation of MuBC in Si for a [111] crystal. 

 

 

number of 

states is 

now 2 

still 2 spins 

in each state 

this screen 

shows State 1: 

MuBC parallel 

to the field 

(25% of MuBC 

species) 

MuBC axis is 

[111] for 

State 1. 

Applied field 

B0 is along 

[111], as is the 

initial 

polarisation 

and detector 

Specified axis 

still ticked. 

this screen 

shows State 2: 

MuBC not 

parallel to the 

field (75% of 

MuBC species) 

The only 

difference from 

the State 1 

screen is that the 

MuBC axis is  now 

along one of the 

[111] crystal 

directions that is 

not parallel to 

the applied field. 



6 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6b. When Quantum begins to run with 2 states, it asks for the relative state fractions.  For the 

case of the input screens given in Fig. 6a. state 1 needs to be given 0.25 and state 2 0.75. 

 

3. MuBC level crossing resonance with 29Si in silicon 

As explored by Kiefl et al (Phys Rev Lett 60 (1988) 224), it is possible to observe the level crossing 

resonance between MuBC and  the spin-1/2 29Si nuclei – a careful experiment as 29Si is only 4.7% 

abundant.  The resonance, shown in the Kiefl paper fig. 3 as its differential, can be modelled in 

Quantum by assuming that one of the Si nuclei neighbouring the MuBC centre is a spin-1/2 29Si. Here 

we use the nuclear hyperfine parameters from the Kiefl paper to reproduce the resonance. Fig. 7 

shows the Quantum input screen; Fig. 8 the resulting resonance. 

(NB: The position and shape of the resonance are correct here, but the relative abundance of 29Si has 

not been included so the amplitude of the resonance would be smaller in reality – the curve would 

need to be multiplied by about 0.09 to represent the probability that a MuBC was next to a 29Si 

nucleus. ) 

 

 



7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Quantum input screens for the level crossing resonance of MuBC with 29Si in silicon. 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Level crossing resonance for MuBC with 29Si in silicon, applied field at 90o to the [111] MuBC axis. 
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4. RF resonance of triplet muonium in quartz 

Quantum allows RF resonance lines to be simulated.  In this example, the triplet isotropic muonium 

resonance in quartz is reproduced.  Integral asymmetry is used, together with ‘red-green’ mode, i.e. 

Quantum will plot the difference between ‘RF on’ (red) and ‘RF off’ (green) states.  Fig. 9 shows the 

Quantum input screen, and Fig. 10 the resulting RF resonance plot. 

(NB: note that Quantum's definition for linearly polarised fields is the peak B1; sometimes B1 in the 

rotating frame is quoted which will have half this value. Integral counting start=0 corresponds to a 

continuous beam instrument in integral mode; start times greater than 0 will usually apply to time 

domain data that has been averaged afterwards.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9. Quantum input screen for reproducing the RF triplet resonance for isotropic muonium in 

quartz. 
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Fig.10. RF resonance for isotropic muonium in quartz. 

 

5. Quadrupolar level crossing resonance in copper 

Level crossing resonances can occur when the Zeeman energy for muons in field matches the 

combined Zeeman and quadrupolar levels for the spin 3/2 Cu nuclei in copper.  See, for example, R. 

Kadono et al, ‘Quantum diffusion of positive muons in copper’ Phys Rev B 39 23-41 (1989) – fig. 13 in 

particular.   

Cu can be simulated most easily if we approximate to only one Cu nucleus instead of 6 nearest 

neighbours (so the sigma comes out at about 1/sqrt(6) of the experimental value). Put the muon at 

(0,0,0) and Cu at (0,0,1.9) (O-site, 5% dilation), Cu I=3/2, gyromagnetic ratio 11.2979 (63Cu), easy 

axis (0,0,1), quadrupole splitting 1.05 MHz. Average over orientations (100), "uniform" mode. Easy 

axis along (001) chosen as this gives the best uniformity. 

Fig. 11 shows the output level crossing resonance; fig. 12 the Quantum input screen. 

 

 

 

 

 

 

 

 

Fig. 11. Quadrupolar resonance in copper. 

 

 



10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9. Quantum input screen for reproducing the quadrupolar level crossing resonance in copper. 

NB: In uniform and Monte Carlo modes the field direction is calculated from angles theta (with 

respect to the z-axis) and phi (in the x-y plane). Any distribution which is uniform over cos(theta)=-1 

to +1 and uniform over phi=0 to 2pi will map to a spherical average. (For TF and RF there's a third 

angle, the direction psi of the initial polarisation, or RF B1, around B0 starting at a fixed point 

perpendicular to x for example). So for N points in Uniform mode it takes N equally spaced values for 

cos(theta). Phi increments by 2pi/e per point to give a uniform scatter of points over the sphere. (Psi 

increments by 2pi*e to hopefully remain uncorrelated with phi). 
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