IMAT (Imaging and MaTerials instrument): Technical Details
14 Sep 2009
Yes
-  

 

 

Technical information and performance parameters of IMAT

No
​​​​​​​​​IMAT
 

​IMAT is on a broad-pulse, coupled liquid hydrogen moderator on the ISIS TS-2 source which is operated at 10 Hz, in order to achieve a high cold neutron flux for radiography, tomography, and rapid texture analysis. 

Two double-disk choppers prevent frame overlap and a T0 chopper  removes fast neutrons and gamma radiation. A supermirror straight neutron guide transports neutrons to an aperture selector at 46 m from the moderator, offering a choice of apertures including one open position for the beam to pass through for diffraction experiments. A single-frame mode with a wavelength bandwidth of 6 Å, and a double-frame mode with a bandwidth of 12 Å, will benefit both imaging and diffraction experiments. For texture and strain analysis IMAT has​ a high neutron flux at medium resolution, ideal for time-dependent in-situ loading and in-situ processing studies. 

The main instrument components for the two operating modes, imaging and diffraction, are summarised in Table 1 and detector/cameras available for white beam imaging as well as time-of-flight bragg edge imaging and their parameters are summarized in Table 2. ​

Instrument Parameters

Table 1: Main instrument parameters:

​General
​Single Frame Bandwidth
​1-7 Å
​Flight path to sample
​56 m
Imaging
​L: Distance pinhole - sample
D: Aperture Diameter
​10 m
5, 10, 20, 40, 80 mm
​L/D
2000, 1000, 500, 250, 125​
​Best spatial resolution
​50 μm
​Max Field of View
​200 X 200 mm2
​Wavelength resolution
Δλ/λ=0.7% (at 3 Å)
​Time-integrated neutron flux
​4 X 107 n/cm2/sec (for L/D: 250)

​Diffraction at 90o
​Secondary flight path
​2.0 m

​Detector coverage (each of the two arrays)
​30 X 60 degrees (horizontal X vertical)

​Diffraction resolution
Δd/d=0.7% (at 3 Å)

​Minimum guage volume
​1X1X1 mm3



Table 2: IMAT imaging detectors​​


​Camera/Detector Type
​Camera/Detector Parameters
​Energy Selection Options and Special Features
​Berkeley MCP (Timepix 2)
Field of View (mm2​)
Pixel size (​​μm)
Number of Pixels
Number of Time Bins
Smallest Time Bin (ns)
Registers per pixel
Detection Efficiency

28 X 28
55
512 X 512
3100
~10
1
up to 40% for cold neutrons

TOF: Triggered by source
Energy dispersive
High neutron detection efficiency
​Oxford - ISIS GP2
Field of View (mm2​)
Pixel size (​​μm)
Number of Pixels
Number of Time Bins
Smallest Time Bin (ns)
Registers per pixel
Detection Efficiency

22.7 X 22.7
70
324X 324
4096
12.5
4
7.5% at 2.5Å

TOF: Triggered by source
Energy dispersive
Compact design: 15cm X 15cm X 15cm​
Messina Tomography Camera Box
Field of View (mm2​)
Effective Pixel size(2048) (​​μm)
ANDOR Ikon-L 936 CCD
Number of Pixels
ANDOR Zyla sCMOS 4.2 Plus
Number of Pixels
ANDOR iStar DH712 CCD​
Number of Pixels

60X60 - 210X210
29-103

2048X2048; cooled

2048X2048

512X512; gatable

Flexible design; autofocus

White beam camera; coarse energy selection via choppers
White beam camera; coarse energy selection via choppers
Source triggered gate: one energy channel
​nGEM gas electron multiplier
Field of View (mm2​)
Number of Pixels
Effective pixel size (​​μm)

100 X 100
125X125
~800

References

​[1] G. Burca, W. Kockelmann, J.A. James, M.E. Fitzpatrick, Modelling of an imaging beamline at the ISIS pulsed neutron source, Journal of Instrumentation, 8 (2013), no 10, http://dx.doi.org/10.1088/1748-0221/8/10/P10001

[2] K. Lefmann, K. Nielsen, McStas, a General Software Package for Neutron Ray-tracing Simulations, Neutron News, 10 (3), 20-23, (1999)

[3] P. Willendrup, E. Farhi, K. Lefmann, McStas 1.7 – a new version of the flexible Monte Carlo neutron scattering package, Physica B, 350, 735-737 (2004)

R. Santisteban, L. Edwards, M.R. Daymond, A virtual laboratory for neutron and synchrotron strain scanning, Physica B: Condensed Matter, 350 (1), 743-746 (2004)

[5] J.A. James, L. Edwards, Application of robot kinematics methods to the simulation and control of neutron beam line positioning systems, Nucl. Instr. Meth. A, 571 (3), 709-718 (2007)


[6] W. Kockelmann, T. Minniti, D. E. Pooley, G. Burca, R. Ramadhan, F. A. Akeroyd, G. D. Howells, C. Moreton-Smith, D. P. Keymer, J. Kelleher, S. Kabra, T.-L. Lee, R. Ziesche, A. Reid, G. Vitucci​, G. Gorini, D. Micieli, R.G. Agostino, V.Formoso, F.Aliotta, R. Ponterio, S.Trusso, G.Salvato, C. Vasi, F. Grazzi, K. Watanabe, J. W. L. Lee, A. S. Tremsin​, J.B. McPhate, D.Nixon, N.Draper,

W.Halcrow, J.Nightingale, Time-of-Flight Neutron Imaging on IMAT@ISIS: A New User Facility for Materials Science, J. Imaging, 4, 47, 1-22, (2018).







Contact: