Sensing Superconductivity
19 Dec 2013




Superconductors expel magnetic fields from the bulk of their interior and can conduct electricity without resistance. Using muons we can understand the mechanisms of superconductivity, a state of matter reached by some materials when they are cooled to ve


“Trying to understand superconductivity and get it to work at higher temperatures is one of the grand challenges of physical science.  What you need is an experimental technique to understand new superconductors from the inside, seeing how they respond to magnetic fields and then deducing the stiffness of the superfluid condensate that makes them work.  Muons provide just that, since the way they precess in magnetic fields allows you to figure out the way magnetic fields are distributed within the superconductor.  The very low background that you get at ISIS makes it perfect for doing this sort of experiment.  By collaborating with very good chemistry groups who are discovering new superconducting materials all the time, it's been possible to do these measurements in materials almost immediately after the compounds have been discovered.” Professor Steve Blundell, University of Oxford.