ISIS is a world-leading centre for research in the physical and life sciences at the STFC Rutherford Appleton Laboratory near Oxford in the United Kingdom. Our suite of neutron and muon instruments gives unique insights into the properties of materials on the atomic scale. 

We support a national and international community of more than 3000 scientists for research into subjects ranging from clean energy and the environment, pharmaceuticals and health care, through to nanotechnology and materials engineering, catalysis and polymers, and on to fundamental studies of materials.

News and Events

ISIS Annual Review 2016
ISIS Annual Review 2016 - Out Now!

Wednesday 14 December 2016

The annual review of the ISIS Neutron and Muon Source for 2016 is now available.

ICANS 2017 will be held in Oxford.
ICANS XXII - Registration now open!

Thursday 15 December 2016

The 22nd meeting of the International Collaboration on Advanced Neutron Sources (ICANS XXII) will be held on the 27th - 31st March 2017 in Oxford.

The Indian Minister and ISIS Director
Indian Department of Science and Technology invests £2 million in ISIS facility

Tuesday 08 November 2016

The Indian Department of Science and Technology has invested £2 million in STFC’s ISIS neutron and muon facility through its Nanomission programme. The financial commitment between STFC and the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) which extends over the next five years, gives Indian scientists access to the entire portfolio of instruments at ISIS. It also covers the travel and subsistence costs for new Indian user groups and allows for a number of Indian Post-Doc and PhD researchers to be based at STFC’s Rutherford Appleton Laboratory.

Prof Carla Andreani
ISIS user Prof Carla Andreani wins prestigious award

Monday 24 October 2016

Professor Carla Andreani, ISIS user and long-term collaborator of the facility, has been awarded the Giuseppe Occhialini Medal and Prize from the Italian Physical Society together with the Institute of Physics. The award, which alternates between researchers in the UK and in Italy, recognises Prof Andreani, “For her transformative contributions to novel experimental techniques and methods using eV and MeV neutrons and for her tireless commitment to the creation and nurturing of a truly outstanding Italian community in neutron science.”

Egyptian artefact analysed on IMAT.
Inauguration of new instrument IMAT and a celebration of the Italian connection

Monday 10 October 2016

Today sees IMAT, the latest ISIS instrument to come online, officially inaugurated in a joint celebration with the Italian Research Council, Consiglio Nazionale delle Ricerche (CNR). IMAT will provide new capabilities in 3D neutron imaging and diffraction and is expected to have a wide range of applications including materials science, engineering, cultural heritage and earth science.

Major Instrument and Accelerator Projects

Target Station 2 Phase 2

2015 will see both the capacity and capability of ISIS increase with two new instruments coming online. Target station 2 started operation in 2008 with 7 neutron instruments, and now two new instruments, ChipIR and Larmor have received first neutrons and are beginning their commissioning phases. A further two instruments, IMAT and ZOOM, are under construction.

ISIS First Target Station Project

The ISIS First Target Station (TS1) has now been operating for over 30 years. During this period, there has been no significant work carried out to maintain or develop the internals of TS1. The ISIS First Target Station project aims to refurbish much of TS1 to ensure its continued operation for many years into the future.

TOSCA and MAPS guide projects

Design on the new guides for Maps and Tosca has started with the aim of having the upgraded instruments running sometime in 2016.

Replacement of muon beamline magnets

The ISIS muon facility has been operating since 1987, and some of the muon beamline magnets were second-hand then – they are now over 50 years old in some cases. During the long shutdown in 2014/5, the quadrupoles near the muon target will be replaced.

Linac Tank 4 Replacement

The ISIS linear accelerator (linac) consists of 4 radiofrequency (RF) accelerating tanks, accelerating hydrogen ions generated in the ion source to 37% of the speed of light before feeding them into the synchrotron for final acceleration. Tanks 1 and 4 were built at RAL in 1976, for ISIS’ predecessor, Nimrod. They are now showing their age, so a project is underway to replace tank 4 by 2018.

Refurbishing part of the first target station proton beamline (EPB1)

EPB1 is made up of 68 magnets all of which are roughly 50 years old. Many of the electrical windings of these magnets are deteriorating (especially in high radiation-dose areas near the downstream end of EPB1). Replacement of magnets upstream of the muon target and between the muon target and the neutron target will take place during the 2014/15 shutdown.

Science at ISIS

Intracellular water – an overlooked cancer drug target?
Intracellular water – an overlooked cancer drug target?

Tuesday 13 December 2016

Scientists have identified a potential new target for the development of anticancer drugs against metastatic breast cancer. In a novel series of experiments, whole human cells were analysed with neutrons for the first time and the results revealed that the water within cells responded to the widely used chemotherapy drug, cisplatin. This study highlights the potential of intracellular water as an additional target for the development of new anticancer drugs, which could lead to higher efficiency, fewer cases of acquired resistance and less deleterious secondary drug effects in the treatment of breast cancer.

Laser system installed on HiFI
Photo µSR gives insights into key industrial processes and fundamental science

Monday 12 December 2016

Photochemistry is a chemical reaction caused by the absorption of light (photons). It underpins a large range of important biological and industrial processes, from photosynthesis in plants through a host of chemical engineering applications – for example, the manufacture of the antimalarial drug artemisinin. Excitations in molecules also play a key role in devices – for example organic LEDs and organic photovoltaic cells. However, the fundamental science that underpins many of the photophysical and photochemical processes is not understood on the atomic scale.

Water: the liquid of life

Tuesday 11 October 2016

Water is vital to life on planet Earth. We see it every day, we drink and bathe in it; we use it to clean, cook, grow crops, provide energy, and we complain when it falls from the skies. It makes up around two thirds of a healthy human, and covers 70% of the Earth’s surface. Yet, despite its importance in everyday life, water has managed to retain some of its mystery.

Credit: Dreamstime
How to deliver drugs across the picky blood-brain barrier

Friday 02 September 2016

Less than 2% of small molecules, including therapeutics, are able to cross the blood-brain barrier (BBB) and reach the brain from the bloodstream. The blood-brain barrier is a semi-permeable barrier that separates the extracellular fluid surrounding the brain from circulating blood. Separating the brain from the bloodstream, it protects the brain against any sort of toxins in the blood. Its protective nature is because of its high selectivity; however, this also means it is difficult to deliver therapeutics to the brain.

Making an impact

Impact of Neutron Scattering brochure
Neutron Scattering: Materials research for modern life

Thursday 22 November 2012

Read about the social and economic impact of neutron scattering in a new brochure highlighting key examples of the use of the technique.

Skip to the top of the page